-
-
Notifications
You must be signed in to change notification settings - Fork 256
/
Copy pathregression.rs
278 lines (233 loc) · 8.27 KB
/
regression.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//! Support Vector Regression
use linfa::{
dataset::{AsSingleTargets, DatasetBase},
traits::Fit,
traits::Transformer,
traits::{Predict, PredictInplace},
};
use linfa_kernel::Kernel;
use ndarray::{Array1, Array2, ArrayBase, ArrayView1, ArrayView2, Data, Ix2};
use super::error::{Result, SvmError};
use super::permutable_kernel::PermutableKernelRegression;
use super::solver_smo::SolverState;
use super::SolverParams;
use super::{Float, Svm, SvmValidParams};
/// Support Vector Regression with epsilon tolerance
///
/// This methods solves a binary SVC problem with a penalizing parameter epsilon between (0, inf). This defines the margin of tolerance, where no penalty is given to errors.
///
/// # Parameters
///
/// * `params` - Solver parameters (threshold etc.)
/// * `kernel` - the kernel matrix `Q`
/// * `targets` - the continuous targets `y_i`
/// * `c` - C value for all targets
/// * `p` - epsilon value for all targets
pub fn fit_epsilon<F: Float>(
params: SolverParams<F>,
dataset: ArrayView2<F>,
kernel: Kernel<F>,
target: &[F],
c: F,
p: F,
) -> Svm<F, F> {
let mut linear_term = vec![F::zero(); 2 * target.len()];
let mut targets = vec![true; 2 * target.len()];
for i in 0..target.len() {
linear_term[i] = p - target[i];
targets[i] = true;
linear_term[i + target.len()] = p + target[i];
targets[i + target.len()] = false;
}
let kernel = PermutableKernelRegression::new(kernel);
let solver = SolverState::new(
vec![F::zero(); 2 * target.len()],
linear_term,
targets.to_vec(),
dataset,
kernel,
vec![c; 2 * target.len()],
params,
false,
);
let res = solver.solve();
res.with_phantom()
}
/// Support Vector Regression with nu parameter
///
/// This methods solves a binary SVC problem with parameter nu, defining how many support vectors should be used. This parameter should be in range (0, 1).
///
/// # Parameters
///
/// * `params` - Solver parameters (threshold etc.)
/// * `kernel` - the kernel matrix `Q`
/// * `targets` - the continuous targets `y_i`
/// * `c` - C value for all targets
/// * `nu` - nu value for all targets
pub fn fit_nu<F: Float>(
params: SolverParams<F>,
dataset: ArrayView2<F>,
kernel: Kernel<F>,
target: &[F],
c: F,
nu: F,
) -> Svm<F, F> {
let mut alpha = vec![F::zero(); 2 * target.len()];
let mut linear_term = vec![F::zero(); 2 * target.len()];
let mut targets = vec![true; 2 * target.len()];
let mut sum = c * nu * F::cast(target.len()) / F::cast(2.0);
for i in 0..target.len() {
alpha[i] = F::min(sum, c);
alpha[i + target.len()] = F::min(sum, c);
sum -= alpha[i];
linear_term[i] = -target[i];
targets[i] = true;
linear_term[i + target.len()] = target[i];
targets[i + target.len()] = false;
}
let kernel = PermutableKernelRegression::new(kernel);
let solver = SolverState::new(
alpha,
linear_term,
targets.to_vec(),
dataset,
kernel,
vec![c; 2 * target.len()],
params,
false,
);
let res = solver.solve();
res.with_phantom()
}
/// Regress observations
///
/// Take a number of observations and project them to optimal continuous targets.
macro_rules! impl_regression {
($records:ty, $targets:ty, $f:ty) => {
impl Fit<$records, $targets, SvmError> for SvmValidParams<$f, $f> {
type Object = Svm<$f, $f>;
fn fit(&self, dataset: &DatasetBase<$records, $targets>) -> Result<Self::Object> {
let kernel = self.kernel_params().transform(dataset.records());
let target = dataset.as_single_targets();
let target = target.as_slice().unwrap();
let ret = match (self.c(), self.nu()) {
(Some((c, eps)), _) => fit_epsilon(
self.solver_params().clone(),
dataset.records().view(),
kernel,
target,
c,
eps,
),
(None, Some((nu, eps))) => fit_nu(
self.solver_params().clone(),
dataset.records().view(),
kernel,
target,
nu,
eps,
),
_ => panic!("Set either C value or Nu value"),
};
Ok(ret)
}
}
};
}
impl_regression!(Array2<f32>, Array1<f32>, f32);
impl_regression!(Array2<f64>, Array1<f64>, f64);
impl_regression!(ArrayView2<'_, f32>, ArrayView1<'_, f32>, f32);
impl_regression!(ArrayView2<'_, f64>, ArrayView1<'_, f64>, f64);
macro_rules! impl_predict {
( $($t:ty),* ) => {
$(
/// Predict a probability with a feature vector
impl Predict<Array1<$t>, $t> for Svm<$t, $t> {
fn predict(&self, data: Array1<$t>) -> $t {
self.weighted_sum(&data) - self.rho
}
}
/// Predict a probability with a feature vector
impl<'a> Predict<ArrayView1<'a, $t>, $t> for Svm<$t, $t> {
fn predict(&self, data: ArrayView1<'a, $t>) -> $t {
self.weighted_sum(&data) - self.rho
}
}
/// Classify observations
///
/// This function takes a number of features and predicts target probabilities that they belong to
/// the positive class.
impl<D: Data<Elem = $t>> PredictInplace<ArrayBase<D, Ix2>, Array1<$t>> for Svm<$t, $t> {
fn predict_inplace<'a>(&'a self, data: &ArrayBase<D, Ix2>, targets: &mut Array1<$t>) {
assert_eq!(data.nrows(), targets.len(), "The number of data points must match the number of output targets.");
for (data, target) in data.outer_iter().zip(targets.iter_mut()) {
*target = self.weighted_sum(&data) - self.rho;
}
}
fn default_target(&self, x: &ArrayBase<D, Ix2>) -> Array1<$t> {
Array1::zeros(x.nrows())
}
}
) *
}
}
impl_predict!(f32, f64);
#[cfg(test)]
pub mod tests {
use super::Svm;
use crate::error::Result;
use linfa::dataset::Dataset;
use linfa::metrics::SingleTargetRegression;
use linfa::traits::{Fit, Predict};
use ndarray::Array;
#[test]
fn test_linear_epsilon_regression() -> Result<()> {
let target = Array::linspace(0f64, 10., 100);
let mut sin_curve = Array::zeros((100, 1));
for (i, val) in target.iter().enumerate() {
sin_curve[(i, 0)] = *val;
}
let dataset = Dataset::new(sin_curve, target);
let model = Svm::params()
.nu_eps(2., 0.01)
.gaussian_kernel(50.)
.fit(&dataset)?;
println!("{}", model);
let predicted = model.predict(dataset.records());
assert!(predicted.mean_squared_error(&dataset).unwrap() < 1e-2);
Ok(())
}
#[test]
fn test_linear_nu_regression() -> Result<()> {
let target = Array::linspace(0f64, 10., 100);
let mut sin_curve = Array::zeros((100, 1));
for (i, val) in target.iter().enumerate() {
sin_curve[(i, 0)] = *val;
}
let dataset = Dataset::new(sin_curve, target);
let model = Svm::params()
.nu_eps(2., 0.01)
.gaussian_kernel(50.)
.fit(&dataset)?;
println!("{}", model);
let predicted = model.predict(&dataset);
assert!(predicted.mean_squared_error(&dataset).unwrap() < 1e-2);
Ok(())
}
#[test]
fn test_regression_linear_kernel() -> Result<()> {
// simple 2d straight line
let targets = Array::linspace(0f64, 10., 100);
let records = targets.clone().into_shape((100, 1)).unwrap();
let dataset = Dataset::new(records, targets);
// Test the precomputed dot product in the linear kernel case
let model = Svm::params()
.nu_eps(2., 0.01)
.linear_kernel()
.fit(&dataset)?;
println!("{}", model);
let predicted = model.predict(&dataset);
assert!(predicted.mean_squared_error(&dataset).unwrap() < 1e-2);
Ok(())
}
}