-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathconvert_gn.py
125 lines (105 loc) · 4.61 KB
/
convert_gn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
############################
# This conversion is partly borrowed from Detectron.pytorch
###########################
import os
os.environ["GLOG_minloglevel"] = "2"
import sys
import re
# import caffe
import numpy as np
import skimage.io
# from caffe.proto import caffe_pb2
from synset import *
import torch
import torchvision.models as models
import torch.nn.functional as F
import resnet
from collections import OrderedDict
import cPickle as pickle
import argparse
parser = argparse.ArgumentParser(description='Convert group norm checkpoints')
parser.add_argument('--layers', default='50', type=str,
help='50 or 101')
parser.add_argument('--mode', default='pth', type=str,
help='pth or caffe')
args = parser.parse_args()
# def resnet_weights_name_pattern():
# pattern = re.compile(r"conv1_w|conv1_gn_[sb]|res_conv1_.+|res\d+_\d+_.+")
# return pattern
if not os.path.exists('data/R-%s-GN.pkl' %args.layers):
if args.layers == '50':
os.system('cd data;wget https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl')
elif args.layers == '101':
os.system('cd data;wget https://s3-us-west-2.amazonaws.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl')
with open('data/R-%s-GN.pkl' %args.layers, 'rb') as fp:
src_blobs = pickle.load(fp)
if 'blobs' in src_blobs:
src_blobs = src_blobs['blobs']
pretrianed_state_dict = src_blobs
import resnet
model = getattr(resnet, 'resnet%s_gn' %args.layers)()
model.eval()
model_state_dict = model.state_dict()
def detectron_weight_mapping(self):
mapping_to_detectron = {
'conv1.weight': 'conv1_w',
'bn1.weight': 'conv1_gn_s',
'bn1.bias': 'conv1_gn_b'
}
for res_id in range(1, 5):
stage_name = 'layer%d' % res_id
mapping = residual_stage_detectron_mapping(
getattr(self, stage_name), res_id)
mapping_to_detectron.update(mapping)
return mapping_to_detectron
def residual_stage_detectron_mapping(module_ref, res_id):
"""Construct weight mapping relation for a residual stage with `num_blocks` of
residual blocks given the stage id: `res_id`
"""
pth_norm_suffix = '_bn'
norm_suffix = '_gn'
mapping_to_detectron = {}
for blk_id in range(len(module_ref)):
detectron_prefix = 'res%d_%d' % (res_id+1, blk_id)
my_prefix = 'layer%s.%d' % (res_id, blk_id)
# residual branch (if downsample is not None)
if getattr(module_ref[blk_id], 'downsample'):
dtt_bp = detectron_prefix + '_branch1' # short for "detectron_branch_prefix"
mapping_to_detectron[my_prefix
+ '.downsample.0.weight'] = dtt_bp + '_w'
mapping_to_detectron[my_prefix
+ '.downsample.1.weight'] = dtt_bp + norm_suffix + '_s'
mapping_to_detectron[my_prefix
+ '.downsample.1.bias'] = dtt_bp + norm_suffix + '_b'
# conv branch
for i, c in zip([1, 2, 3], ['a', 'b', 'c']):
dtt_bp = detectron_prefix + '_branch2' + c
mapping_to_detectron[my_prefix
+ '.conv%d.weight' % i] = dtt_bp + '_w'
mapping_to_detectron[my_prefix
+ '.' + pth_norm_suffix[1:] + '%d.weight' % i] = dtt_bp + norm_suffix + '_s'
mapping_to_detectron[my_prefix
+ '.' + pth_norm_suffix[1:] + '%d.bias' % i] = dtt_bp + norm_suffix + '_b'
return mapping_to_detectron
name_mapping = detectron_weight_mapping(model)
name_mapping.update({
'fc.weight': 'pred_w',
'fc.bias': 'pred_b'
})
assert set(model_state_dict.keys()) == set(name_mapping.keys())
assert set(pretrianed_state_dict.keys()) == set(name_mapping.values())
# pattern = resnet_weights_name_pattern()
for k, v in name_mapping.items():
if isinstance(v, str): # maybe a str, None or True
if True: #pattern.match(v):
pretrianed_key = k.split('.', 1)[-1]
assert(model_state_dict[k].shape == torch.Tensor(pretrianed_state_dict[v]).shape)
model_state_dict[k].copy_(torch.Tensor(pretrianed_state_dict[v]))
if k == 'conv1.weight' and args.mode == 'pth':
tmp = model_state_dict[k]
tmp = tmp[:,[2,1,0]].numpy()
tmp *= 255.0
tmp *= np.array([0.229, 0.224, 0.225])[np.newaxis,:,np.newaxis,np.newaxis]
model_state_dict[k].copy_(torch.from_numpy(tmp))
torch.save(model_state_dict, 'resnet_gn%s-%s.pth'%(args.layers, args.mode))
print('Converted state dict saved to %s' %('resnet_gn%s-%s.pth'%(args.layers, args.mode)))