-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocess_utils.py
161 lines (133 loc) · 6.36 KB
/
preprocess_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import re
import emoji
import numpy as np
import torch
from torchtext.legacy.data import Field, LabelField, TabularDataset, BucketIterator
from torchtext.vocab import build_vocab_from_iterator
from torch.utils.data import Dataset
import nltk
nltk.download('stopwords')
import spacy
import pandas as pd
from sklearn.model_selection import train_test_split
import transformers
def format_training_file(text_file, module_path=''):
tweets = []
classes = []
for line in open(module_path+text_file,'r',encoding='utf-8'):
line = re.sub(r'#([^ ]*)', r'\1', line)
line = re.sub(r'https.*[^ ]', 'URL', line)
line = re.sub(r'http.*[^ ]', 'URL', line)
line = emoji.demojize(line)
line = re.sub(r'(:.*?:)', r' \1 ', line)
line = re.sub(' +', ' ', line)
line = line.rstrip('\n').split('\t')
tweets.append(line[1])
classes.append(int(line[2]=='OFF'))
return tweets[1:], classes[1:]
def train_val_split_tocsv(tweets, classes, val_size=0.2, module_path=''):
tweets_train, tweets_val, y_train, y_val = train_test_split(tweets, classes, test_size=val_size, random_state=42)
df_train = pd.DataFrame({'text': tweets_train, 'label': y_train})
df_val = pd.DataFrame({'text': tweets_val, 'label': y_val})
df_train.to_csv(module_path+'data/offenseval_train.csv', index=False)
df_val.to_csv(module_path+'data/offenseval_val.csv', index=False)
def format_test_file(text_file_testset, text_file_labels, module_path=''):
tweets_test = []
y_test = []
for line in open(module_path+text_file_testset,'r',encoding='utf-8'):
line = re.sub(r'#([^ ]*)', r'\1', line)
line = re.sub(r'https.*[^ ]', 'URL', line)
line = re.sub(r'http.*[^ ]', 'URL', line)
line = emoji.demojize(line)
line = re.sub(r'(:.*?:)', r' \1 ', line)
line = re.sub(' +', ' ', line)
line = line.rstrip('\n').split('\t')
tweets_test.append(line[1])
for line in open(module_path+text_file_labels,'r',encoding='utf-8'):
line = line.rstrip('\n').split('\t')
y_test.append(int(line[0][-3:]=='OFF'))
return tweets_test[1:], y_test
def test_tocsv(tweets_test, y_test, module_path=''):
df_test = pd.DataFrame({'text': tweets_test, 'label': y_test})
df_test.to_csv(module_path+'data/offenseval_test.csv', index=False)
def create_fields_dataset(model_type, fix_length=None, module_path=''):
tokenizer = None
if model_type == "DistillBert":
tokenizer = transformers.DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
pad_index = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
print('pad_index', pad_index)
field = Field(use_vocab=False, tokenize=tokenizer.encode, pad_token=pad_index, fix_length=fix_length)
elif model_type == "DistillBertEmotion":
tokenizer = transformers.DistilBertTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
pad_index = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
print('pad_index', pad_index)
field = Field(use_vocab=False, tokenize=tokenizer.encode, pad_token=pad_index, fix_length=fix_length)
else:
spacy_en = spacy.load("en_core_web_sm")
def tokenizer_func(text):
return [tok.text for tok in spacy_en.tokenizer(text)]
field = Field(sequential=True, use_vocab=True, tokenize=tokenizer_func, lower=True, fix_length=fix_length,
stop_words = nltk.corpus.stopwords.words('english'))
label = LabelField(dtype=torch.long, batch_first=True, sequential=False)
fields = [('text', field), ('label', label)]
print("field objects created")
train_data, val_data = TabularDataset.splits(
path = '',
train=module_path+'data/offenseval_train.csv',
test=module_path+'data/offenseval_val.csv',
format='csv',
fields=fields,
skip_header=True,
)
_, test_data = TabularDataset.splits(
path = '',
train=module_path+'data/offenseval_train.csv',
test=module_path+'data/offenseval_test.csv',
format='csv',
fields=fields,
skip_header=True,
)
return (field, tokenizer, label, train_data, val_data, test_data)
#Create train and test iterators to use during the training loop
def create_iterators(train_data, test_data, batch_size, dev, shuffle=False):
train_iterator, test_iterator = BucketIterator.splits(
(train_data, test_data),
shuffle=shuffle,
device=dev,
batch_size=batch_size,
sort = False,
)
return train_iterator, test_iterator
def get_vocab_stoi_itos(field, tokenizer=None):
if tokenizer is not None:
vocab_stoi = tokenizer.encode
vocab_itos = tokenizer.decode
else:
vocab_stoi = field.vocab.stoi
vocab_itos = field.vocab.itos
return (vocab_stoi, vocab_itos)
def get_datasets(training_data, testset_data, test_labels_data, model_type, fix_length=None, module_path=''):
# preprocessing of the train/validation tweets, then test tweets
tweets, classes = format_training_file(training_data, module_path=module_path)
tweets_test, y_test = format_test_file(testset_data, test_labels_data, module_path=module_path)
print("file loaded and formatted..")
train_val_split_tocsv(tweets, classes, val_size=0.2, module_path=module_path)
test_tocsv(tweets_test, y_test, module_path=module_path)
print("data split into train/val/test")
field, tokenizer, label, train_data, val_data, test_data = create_fields_dataset(model_type, fix_length,
module_path=module_path)
# build vocabularies using training set
print("fields and dataset object created")
field.build_vocab(train_data, max_size=10000, min_freq=2)
label.build_vocab(train_data)
print("vocabulary built..")
return (field, tokenizer, train_data, val_data, test_data)
def get_dataloaders(train_data, val_data, test_data, batch_size, device):
train_iterator, val_iterator = create_iterators(train_data, val_data, batch_size, device, shuffle=True)
_, test_iterator = create_iterators(train_data, test_data, 1, device, shuffle=False)
print("dataloaders created..")
dataloaders = {}
dataloaders['train'] = train_iterator
dataloaders['val'] = val_iterator
dataloaders['test'] = test_iterator
return dataloaders