-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patha-quick-guide.tex
367 lines (270 loc) · 9.41 KB
/
a-quick-guide.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
\documentclass{beamer}
\usepackage[latin1]{inputenc}
\usepackage{hyperref}
\title[Small superpressure]{A quick guide to small superpressure}
\subtitle{\url{https://github.com/richardeoin/a-quick-guide}}
\author{Richard Meadows}
\institute{UKHAS Conference 2016}
\date{}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Superpressure is.. }
\begin{columns}
\begin{column}{0.6\textwidth}
\begin{itemize}
\item Gas sealed within the envelope.
%% if the balloon is to do anything useful, this gas will end
%% up at a higher pressure than the surrounding air - hence
%% the name
\item Envelope is intended to be inelastic.
%% that is, the envelope will stop stretching and become
%% stable, The resut of this is that the balloon remains at a
%% particular density-altitude.
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
\begin{figure}[!ht]
%% image of lally balloon
\includegraphics[width=1\textwidth]{lally_1967_balloon.png}
\caption{GHOST Balloon, Lally 1967}
%% this image is from when first
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Can Amateurs do this too?}
\begin{itemize}
\item Yes!
\item See also Dan Bowen at \href{https://ukhas.org.uk/general:ukhasconference}{UKHAS 2011}.
\end{itemize}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{figure}[!ht]
%% ubseds6
\includegraphics[width=1\textwidth]{ubseds6_altitude_plot.png}
\caption{UBSEDS6, 7th June 2015}
\end{figure}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}[!ht]
%% image of b-64
\includegraphics[width=1\textwidth]{B-64-all.jpg}
\caption{B-64, Leo Bodnar 2014}
\end{figure}
\end{column}
\end{columns}
% Multi-day flights with small envelopes (1-2 meters on the longest axis).
% Leo flight -- 134 days
%% go back and check Dan's presentation too - I haven't got time to
%% return to everything he discussed.
\end{frame}
%% What does one look like in flight?
\begin{frame}{In Flight}
\begin{figure}[!ht]
%% image of ubseds20
\centering
\includegraphics[width=0.8\textwidth]{UBSEDL_2016-08-29T10-24-37_3.png}
\caption{UBSEDS20 balloon at 12.5km float, 29th August 2016}
\end{figure}
%% lots of people here contributed to this image..
\end{frame}
\begin{frame}{Floating}
% Floating - what does this mean?
% calcualate density
Float when:
\[
\text{Atmospheric Density} = \text{System Density} = {\frac{\Sigma{m}}{V}}
\]
%% we can assume that the payload has no volume, and the same for
%% the material that makes the balloon.
However, the balloon envelope stretches somewhat:
% Envelope isn't perfectly inelastic
\[
V = V_{initial}\times\Gamma
\]
%% introduce gamma as ratio Vfloat / Vbuilt
%% atmospheric density profile
\begin{figure}[!ht]
\centering
\includegraphics[width=0.8\textwidth]{isa_density_profile.png}
\caption{Density in the International Standard Atmosphere}
\end{figure}
\end{frame}
\begin{frame}{The Origins of Superpressure}
%% Superpressure - where does this come from?
\begin{itemize}
\item Free lift
%% more mols of gas inside than displaced outside
\item Supertemperature
%% aka. superheat, initial studies tend to use supertemperature,
%% so we'll stick with that. Floating greenhouse.
\item Vertical Air Currents (Lally 1967, VI. D. p.31)
%% less significant, < 10%
\end{itemize}
\end{frame}
\begin{frame}{Calculating Superpressure 1}
Ideal gas law $PV = nRT$
\begin{columns}
\begin{column}{0.5\textwidth}
% gas
\begin{figure}[!ht]
\centering
\includegraphics[width=0.6\textwidth]{circle_gas.png}
\end{figure}
\[
P_{gas}V = {m_{gas}\over{M_{gas}}} R T_{gas}
\]
\end{column}
\begin{column}{0.5\textwidth}
% displaced air
\begin{figure}[!ht]
\centering
\includegraphics[width=0.6\textwidth]{circle_air_displaced.png}
\end{figure}
\[
P_{air}V = {m_{system}\over{M_{air}}} R T_{air}
\]
% can say this because we're floating
\end{column}
\end{columns}
% now make volumes equal, and cancel R
\end{frame}
\begin{frame}{Calculating Superpressure 2}
Definitions of Superpressure and Supertemperature:
% aka. superheat
\[
P_{super} = P_{gas} - P_{air}
\]
\[
T_{super} = T_{gas} - T_{air}
\]
Assuming volumes are equal:
% taking the equation on the previous page, and after some algebra..
% algebra is available as a separate document
\[
P_{super} = { {R\over{V}} \bigg[ \Big( {m_{gas}\over{M_{gas}}} - {m_{system}\over{M_{air}}} \Big)T_{air} + {{m_{gas}}\over{M_{gas}}}T_{super} \bigg]}
\]
% first term is due to extra gas - free lift, second due to supertemperature
The second term dominates, so:
\[
{P_{super}\over{T_{super}}} \approx {{m_{gas}}\over{M_{gas}}}{R\over{V}}
\]
% So superpressure and supertemperature are proportional - this is
% well known (Lally etc.) - and we want to minimise the constant of
% proportionality.
\end{frame}
% \item Effects of changing gamma.
\begin{frame}{Supertemperature}
\begin{figure}[!ht]
%% lally table
\centering
\includegraphics[width=0.8\textwidth]{lally_19_table_9.png}
\caption{Lally 1967, Table 9 p.24 (edited)}
\end{figure}
% this gives us a useful guesstimate at the supertemperature
\end{frame}
% I noted earlier that amateur balloons aren't spherical. Instead
% they're make flat and then inflated. Bristol SEDS, Leo, Qualatex
% are all essentially this shape. It's easy to make.
\begin{frame}{Mylar Balloon Shape 1}
% This is the "mylar balloon".
% shape. So called because mathematicians found this shape "in the
% wild" and named it after the object that took this shape - namely
% party balloons made from mylar.
\begin{figure}[!ht]
%% mylar balloon shape
\centering
\includegraphics[width=0.7\textwidth]{paulsen_1994_figure_1.png}
\caption{Paulsen 1994, Figure 1}
\end{figure}
\[
\int_{0}^{a} \sqrt {1 + f'(x)^2}\ dx = r
\]
% When you inflate it, the radius that the 2D shape had still
% exists. So it limits the shape
% This is a well defined shape, can calcuate volume and so on - for
% instance the area of this cross section is 2 a^2
\end{frame}
\begin{frame}{Mylar Balloon Shape}
\begin{figure}[!ht]
\centering
\includegraphics[width=1\textwidth]{mylar_balloon_crimping_hot.png}
\caption{Crimping means a small area the in centre is stressed. }
\end{figure}
%% The size of the area that's stressed is related to the
%% elasticisty of the material, which probably is quite low at
%% stratospheric temperatures.
%% So this design doesn't appear to be much better than the tetroon,
%% where stress is concentrated at the corners.
%% But we've got a trick...
\end{frame}
\begin{frame}{The Magic of Pre-stretch}
%% Major step in making these balloons work - attributed to whom??
\begin{itemize}
\item Minimise Creep and relieve manufacturing stresses (Lally 1967, VI. C. p.28)
%% Lally knew about this
\item Increases $\Gamma$, leading to higher float and lower superpressure.
% our equation for density has volume on the bottom - we increase
% volume, get less dense and go higher. Same for pressure-thermal ratio
% Gamma ~1.7 for latest flights
\item Re-distributes stresses around mylar balloon shape.
%% When first built the stress is concentrated in the middle of each gore.
%% Pre-stretching equalises the stress over a much greater proportion of the gore.
%% Pre-stretch generally good, as long as your material
%% mantains its properties. We haven't explored gamma > 2 regime
%% however.
\end{itemize}
\end{frame}
\begin{frame}{Envelope Construction}
\begin{figure}[!ht]
\centering
\includegraphics[width=0.9\textwidth]{bristol_seds_balloon_1_9m.png}
\caption{Drawing for 1.9m balloon}
\end{figure}
\end{frame}
\begin{frame}{Envelope Construction}
\begin{figure}[!ht]
\centering
\includegraphics[width=1\textwidth]{bristol_seds_balloon_1_9m_film.png}
\caption{50$\mu$m film cross section}
\end{figure}
Thanks to Exploratory Ideas grant from CEOI.
%% Paid for the lab time to take a look at this
\end{frame}
\begin{frame}{Further Work}
\begin{itemize}
\item Web based calcuator - like the Burst Calculator.
\item Numerical analysis of previous flights.
\item Guidelines for minimum free lift.
%% drag equation
\item Modelling and measuring supertemperature.
%% not so easy, but do-able
\item Model for mylar tube shape.
%% bit of geometry
\item Explore $\Gamma > 2$
%% the limit of pre-stretch
\item Measuring strain on the ground (Angell and Pack, Apr. 1960).
%% no specilist tools needed
\item Relationship between stress and strain.
%% in non-linear region - okay this is hard
\end{itemize}
\end{frame}
\begin{frame}{Further Work}
\begin{itemize}
\item Have fun flying round the world...
\end{itemize}
\begin{figure}[!ht]
\centering
\includegraphics[width=0.6\textwidth]{pico-pi-logo.png}
\end{figure}
\end{frame}
\begin{frame}{Meridional Hoop}
\begin{figure}[!ht]
\centering
\includegraphics[width=1\textwidth]{mylar_balloon_meridianal_hoop.png}
\caption{Meridional Hoop of a Mylar Balloon }
\end{figure}
\end{frame}
\end{document}