-
Notifications
You must be signed in to change notification settings - Fork 482
/
ppo_full_finetune_single_device.py
1094 lines (946 loc) · 45.9 KB
/
ppo_full_finetune_single_device.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import math
import os
import sys
from functools import partial
from itertools import chain
from typing import Any, Dict, List, Optional, Tuple
from warnings import warn
import torch
from omegaconf import DictConfig, ListConfig
from torch import nn
from torch.optim import Optimizer
from torch.utils.data import DataLoader, DistributedSampler
from torchtune import config, generation, modules, rlhf, training, utils
from torchtune.data import padded_collate
from torchtune.datasets import ConcatDataset
from torchtune.recipe_interfaces import FTRecipeInterface
from torchtune.rlhf import PPOStats, Trajectory
from tqdm import tqdm
log = utils.get_logger("DEBUG")
class PPOFullFinetuneRecipeSingleDevice(FTRecipeInterface):
"""
Full finetuning recipe for RLHF with PPO for dense transformer-based LLMs such as LLama2. This recipe is optimized
for single GPU training. Training on CPU is not supported.
This implementation is based on `Learning to summarize from human feedback <https://arxiv.org/abs/2009.01325`_ and
`Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback <https://arxiv.org/abs/2204.05862`_.
Features:
- Activation Checkpointing. This can be controlled using the ``activation_checkpointing``
flag. Activation checkpointing helps reduce the memory footprint since we no longer keep
activations in memory and instead recompute them during the backward pass. This is especially
helpful for larger batch sizes when you're memory constrained. But these savings in memory
come at the cost of training performance. In most cases training can slow-down quite a bit as
a result of this activation recomputation.
- Precision. Full fp32 and bf16 training are supported. Precision is controlled using the ``dtype``
flag. When ``dtype=bf16``, all activations, gradients and optimizer states are in bfloat16. In
most cases this should halve the memory footprint of full precision (fp32) training, without
loss in model quality (will depend on the model, training data and other settings). For
GPUs which do not support bfloat16, we fall back to fp32. Mixed precision training and fp16
precision are currently not supported.
- Adjusting batch sizes when memory constrained. This recipe uses three different batch sizes:
- ``batch_size`` controls the total number of samples which are sampled from the dataset for a single trajectory.
- ``forward_batch_size`` controls the mini-batch size for trajectory generation. Since gradients are disabled
during trajectory generation, memory consumption is lower and this can be higher than ``ppo_batch_size``.
- ``ppo_batch_size`` controls the number of samples used for a single optimization step during PPO optimization.
Since we're optimizing two models at once, adjusting this parameter can have a big impact during training.
- Gradient Accumulation. You can simulate larger ``ppo_batch_size`` sizes by accumulating gradients. This is
controlled using the ``gradient_accumulation_steps`` flag.
For example: with ``ppo_batch_size``=32 and ``gradient_accumulation_steps``=16, each backward pass during
PPO optimization uses a 'micro batch size' of 2.
Gradient accumulation is especially useful when you are memory constrained. In this case,
accumulating gradients might give you better training speed than enabling activation
checkpointing.
- Optimizer in Backward. Fusing the optimizer step into the backward pass helps reduce the memory
footprint associated with gradients. This can be especially helpful when you are memory
constrained. Note that users can only use ONE of gradient accumulation or optimizer in backward.
These features currently do not work together. For more details on optimizer in backward, please
see this tutorial: https://pytorch.org/tutorials/intermediate/optimizer_step_in_backward_tutorial.html
This paramater can provide significant performance gains, since there the number of optimization steps
scales with ``ppo_epochs`` and ``batch_size``. Depending on the maximum sequence length sampled from the dataset,
we've found that setting ``ppo_batch_size`` to the highest you can fit in memory, and `optimizer_in_bwd=True` to
provide significant memory savings.
- Lower precision optimizers. This recipe supports lower-precision optimizers from the bitsandbytes
library (https://huggingface.co/docs/bitsandbytes/main/en/index). We've tested the recipe with
8-bit AdamW and Paged AdamW. These optimizers are especially helpful when you are memory constrained
since they help reduce the memory footprint associated with the optimizer states.
- Checkpointing. Model weights are checkpointed both at the end of each epoch, and at the end of
training. Optimizer State and recipe state (seed, total_epochs, number of epochs run etc) are
only saved at the end of a given epoch and used in case of resuming training.
Resuming training is controlled by the ``resume_from_checkpoint`` flag. Mid-epoch checkpointing is
currently not supported.
For more details on the checkpointer, please take a look at
our checkpointer deepdive (https://pytorch.org/torchtune/main/deep_dives/checkpointer.html).
- Logging. Terminal, Disk, WandB and TensorBoard are all supported.
Args:
cfg (DictConfig): OmegaConf object parsed from yaml file
Raises:
RuntimeError: If ``dtype`` is set to fp16.
"""
def __init__(self, cfg: DictConfig) -> None:
self._device = utils.get_device(device=cfg.device)
self._dtype = training.get_dtype(cfg.dtype, device=self._device)
# Disable for fp16, as we haven't validated "full" fp16 with this recipe, nor
# enabled necessary features such as gradient scaling.
if self._dtype == torch.float16:
raise RuntimeError(
"full fp16 training is not supported with this recipe. Please use bf16 or fp32 instead."
)
# logging attributes
self._output_dir = cfg.output_dir
self._log_every_n_steps = cfg.get("log_every_n_steps", 1)
self._log_peak_memory_stats = cfg.get("log_peak_memory_stats", False)
if self._log_peak_memory_stats and self._device.type != "cuda":
log.info(
"log_peak_memory_stats was set to True, however, training does not use cuda. Setting log_peak_memory_stats=False."
)
self._log_peak_memory_stats = False
# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
# manually setting up a generator for the recipe
self._rng = torch.Generator(self._device).manual_seed(self.seed)
self._total_steps = 0
self._steps_run = 0
self._total_epochs = 0
self._epochs_run = 0
self.global_step = 0
# Training cfg
self._resume_from_checkpoint = cfg.resume_from_checkpoint
self._gradient_accumulation_steps = cfg.gradient_accumulation_steps
def setup(self, cfg: DictConfig) -> None:
"""
Sets up the recipe state correctly. This includes setting recipe attributes based
on the ``resume_from_checkpoint`` flag.
"""
self._metric_logger = config.instantiate(cfg.metric_logger)
# log config with parameter override
self._metric_logger.log_config(cfg)
# setup checkpointers
(
self._policy_checkpointer,
ref_policy_checkpointer,
self._value_checkpointer,
reward_checkpointer,
) = self._setup_checkpointers(
cfg.checkpointer,
cfg.ref_policy_checkpointer,
cfg.value_checkpointer,
cfg.reward_checkpointer,
)
# load policy checkpoints
policy_model_checkpoint_dict = self._policy_checkpointer.load_checkpoint()
ref_policy_state_dict = ref_policy_checkpointer.load_checkpoint()
# load reward and value model checkpoints
value_model_checkpoint_dict = self._value_checkpointer.load_checkpoint()
reward_model_state_dict = reward_checkpointer.load_checkpoint()
# update recipe state
# ``_setup_model`` handles initialization and loading the state dict. This method
# should be called before ``_setup_optimizer`` since transforming the optimizer
# state dict requires the model
self._model_compile = cfg.compile
self._optimizer_in_bwd = cfg.optimizer_in_bwd
(
self._policy_model,
self._value_model,
self._reward_model,
self._ref_policy_model,
) = self._setup_models(
cfg_model=cfg.policy_model,
cfg_reward_value_model=cfg.reward_and_value_model,
enable_activation_checkpointing=cfg.enable_activation_checkpointing,
compile_model=self._model_compile,
policy_state_dict=policy_model_checkpoint_dict[training.MODEL_KEY],
ref_policy_state_dict=ref_policy_state_dict[training.MODEL_KEY],
value_model_state_dict=value_model_checkpoint_dict[training.MODEL_KEY],
reward_model_state_dict=reward_model_state_dict[training.MODEL_KEY],
)
# setup tokenizer
self._tokenizer = config.instantiate(cfg.tokenizer)
log.info("Tokenizer is initialized from file.")
# _setup_optimizer should take in ckpt_dict only if training is resumed from
# checkpoint. Transforming the opt state dict is handled by this method
self._optimizer = self._setup_optimizer(
cfg_optimizer=cfg.optimizer,
optimizer_in_bwd=cfg.optimizer_in_bwd,
opt_state_dict=(
policy_model_checkpoint_dict[training.OPT_KEY]
if self._resume_from_checkpoint
else None
),
)
self._loss_fn = config.instantiate(cfg.loss)
log.info("Loss is initialized.")
# sampler and dataloader depends on the tokenizer and should be set
# setup afterit is initialized
self._sampler, self._dataloader = self._setup_data(
cfg_dataset=cfg.dataset,
shuffle=cfg.shuffle,
batch_size=cfg.batch_size,
)
self._setup_training_parameters(cfg)
self._setup_training_hyperparameters(cfg)
if self._resume_from_checkpoint:
self._update_recipe_state(policy_model_checkpoint_dict)
# one "step" is a single gradient update update over a minibatch of trajectories
self.global_step = (
self._steps_run
* self._ppo_epochs
* (self.batch_size // self._ppo_batch_size)
)
def _setup_training_hyperparameters(self, cfg) -> None:
"""
Sets up the training hyperparameters for the recipe. This includes the GAE hyperparameters,
generation hyperparameters, reward masking hyperparameters, and stop token ids.
"""
self._kl_coeff = cfg.kl_coeff
# GAE hyperparameters
self._gamma = cfg.gamma
self._lmbda = cfg.lmbda
self._whiten_rewards = cfg.whiten_rewards
# trajectory generation args
self._temperature = cfg.temperature
self._top_k = cfg.top_k
self._max_generated_tokens = cfg.max_generated_tokens
# reward masking args
self._min_response_length = cfg.min_response_length
self._penalise_no_eos = cfg.penalise_no_eos
self._reward_penalty = cfg.reward_penalty
# lots of hand holding for stop tokens
if cfg.get("stop_token_ids", False):
stop_token_ids = cfg.stop_token_ids
if self._tokenizer.eos_id not in stop_token_ids:
warn(
f"tokenizer eos_id ({self._tokenizer.eos_id}) is not in stop_token_ids ({stop_token_ids})."
"This may lead to unexpected behaviour."
)
else:
if not hasattr(self._tokenizer.stop_tokens):
warn(
"No stop tokens defined in tokenizer, and no stop_token_ids provided. This may lead to unexpected behaviour."
)
stop_token_ids = []
else:
stop_token_ids = self._tokenizer.stop_tokens
self._stop_token_ids = torch.tensor(stop_token_ids, device=self._device)
def _setup_training_parameters(self, cfg: DictConfig) -> None:
"""
Validates and sets up parameters for used during training and for tracking training state,
batch sizes for model forward passes during trajectory generation, PPO minibatches, and
PPO microbatches for gradient accumulation.
Raises
- ValueError if:
- batch_size is not divisible by forward_batch_size
- batch_size is not divisible by ppo_batch_size
- ppo_batch_size is not divisible by gradient_accumulation_steps
- num_steps is less than batch_size
- gradient_accumulation_steps > 1 and optimizer_in_bwd is True
"""
self.batch_size = cfg.batch_size
self._forward_batch_size = cfg.forward_batch_size
self._ppo_epochs = cfg.ppo_epochs
self._ppo_batch_size = cfg.ppo_batch_size
self._gradient_accumulation_steps = cfg.gradient_accumulation_steps
self._ppo_backward_batch_size = (
cfg.ppo_batch_size // self._gradient_accumulation_steps
)
if self.batch_size % self._forward_batch_size != 0:
raise ValueError(
f"batch_size ({self.batch_size}) must be exactly divisible by "
f"forward_batch_size ({self._forward_batch_size})."
)
if self.batch_size % self._ppo_batch_size != 0:
raise ValueError(
f"batch_size ({self.batch_size}) must be exactly divisible by "
f"ppo_batch_size ({self._ppo_batch_size})."
)
if self._ppo_batch_size % self._gradient_accumulation_steps != 0:
raise ValueError(
f"ppo_batch_size ({self._ppo_batch_size}) must be exactly divisible "
f"by gradient_accumulation_steps ({self._gradient_accumulation_steps})."
)
if self._gradient_accumulation_steps > 1 and self._optimizer_in_bwd:
raise RuntimeError(
"Gradient accumulation is not supported with optimizer in bwd."
"Please set gradient_accumulation_steps=1, or optimizer_in_bwd=False."
)
self._total_steps = cfg.num_steps // self.batch_size
batches_per_epoch = max(
1, len(self._dataloader)
) # when we only have a single batch in the dataset
self._total_epochs = math.ceil(self._total_steps / batches_per_epoch)
if self._total_steps == 0:
raise ValueError(
f"num_steps {cfg.num_steps} must be greater than the batch size {self.batch_size}."
)
if self._total_steps < len(self._dataloader):
warn(
f"There are fewer total steps ({self._total_steps}, (num_steps//batch_size) "
f"than there are batches ({len(self._dataloader)}) in the dataset. "
f"Training will stop after ({self._total_steps}) steps without saving intermediate checkpoints"
)
if (self._total_steps > batches_per_epoch) and (
self._total_steps % batches_per_epoch != 0
):
warn(
f"num_steps ({cfg.num_steps}) is not exactly divisible by "
f"the number of batches in the dataset ({batches_per_epoch}). "
f"Intermediate checkpoints will only be saved every {batches_per_epoch} steps."
)
log.info(
f"Total steps to run: {self._total_steps}, Total epochs to run: {self._total_epochs}"
)
def _setup_checkpointers(
self,
policy_cfg: DictConfig,
ref_policy_cfg: DictConfig,
value_cfg: DictConfig,
reward_cfg: DictConfig,
) -> Tuple[
training.Checkpointer,
training.Checkpointer,
training.Checkpointer,
training.Checkpointer,
]:
"""
Sets up checkpointers for policy, reference policy, value, and reward models.
Only the policy checkpoint handles recipe state for resuming from checkpoints.
"""
if not self._resume_from_checkpoint:
assert policy_cfg.checkpoint_dir == ref_policy_cfg.checkpoint_dir, (
"Policy and reference policy should be loaded from the same checkpoint directories"
f"at the start of training. Found: {policy_cfg.checkpoint_dir} and"
f"{ref_policy_cfg.checkpoint_dir}"
)
assert policy_cfg.checkpoint_files == ref_policy_cfg.checkpoint_files, (
"Policy and reference policy should be loaded from the same checkpoint files"
f"at the start of training. Found: {policy_cfg.checkpoint_files} and"
f"{ref_policy_cfg.checkpoint_files}"
)
policy_checkpointer = config.instantiate(
policy_cfg,
should_load_recipe_state=self._resume_from_checkpoint,
)
ref_policy_checkpointer = config.instantiate(
ref_policy_cfg,
should_load_recipe_state=False,
)
value_checkpointer = config.instantiate(
value_cfg,
should_load_recipe_state=False,
)
reward_checkpointer = config.instantiate(
reward_cfg,
should_load_recipe_state=False,
)
return (
policy_checkpointer,
ref_policy_checkpointer,
value_checkpointer,
reward_checkpointer,
)
def _setup_models(
self,
cfg_model: DictConfig,
cfg_reward_value_model: DictConfig,
enable_activation_checkpointing: bool,
compile_model: bool,
policy_state_dict: Dict[str, Any],
ref_policy_state_dict: Dict[str, Any],
value_model_state_dict: Dict[str, Any],
reward_model_state_dict: Dict[str, Any],
) -> Tuple[nn.Module, nn.Module, nn.Module]:
"""
Sets up the policy model, reference policy model, reward model, and value model.
"""
with training.set_default_dtype(self._dtype), self._device:
policy_model = config.instantiate(cfg_model)
ref_policy_model = config.instantiate(cfg_model)
reward_model = config.instantiate(cfg_reward_value_model)
value_model = config.instantiate(cfg_reward_value_model)
if enable_activation_checkpointing:
training.set_activation_checkpointing(
policy_model, auto_wrap_policy={modules.TransformerSelfAttentionLayer}
)
training.set_activation_checkpointing(
value_model, auto_wrap_policy={modules.TransformerSelfAttentionLayer}
)
policy_model.load_state_dict(policy_state_dict)
ref_policy_model.load_state_dict(ref_policy_state_dict)
# since we should be loading a classifier checkpoint into
# a classifier model, this function should just ensure
# output.weight appears in the state_dict and the model's parameters,
# and removes output.bias from the state dict if found
training.update_state_dict_for_classifier(
reward_model_state_dict, reward_model.named_parameters()
)
reward_model.load_state_dict(reward_model_state_dict)
# same as above
training.update_state_dict_for_classifier(
value_model_state_dict, value_model.named_parameters()
)
value_model.load_state_dict(value_model_state_dict)
# Validate models were loaded in with the expected dtype.
training.validate_expected_param_dtype(
value_model.named_parameters(), dtype=self._dtype
)
training.validate_expected_param_dtype(
reward_model.named_parameters(), dtype=self._dtype
)
training.validate_expected_param_dtype(
value_model.named_parameters(), dtype=self._dtype
)
training.validate_expected_param_dtype(
ref_policy_model.named_parameters(), dtype=self._dtype
)
log.info(f"Models are initialized with precision {self._dtype}.")
# disabling dropout if found - non-determinism leads to issues in e.g. comparing logprobs
# between ref policy and current policy
for module in policy_model.modules():
if isinstance(module, torch.nn.Dropout):
warn(
f"Dropout found in {module}. This is likely to cause issues during training. Disabling."
)
module.p = 0
for module in value_model.modules():
if isinstance(module, torch.nn.Dropout):
warn(
f"Dropout found in {module}. This is likely to cause issues during training. Disabling."
)
module.p = 0
# disabling grad and dropout in reward and reference policy models
reward_model.eval()
ref_policy_model.eval()
for p in reward_model.parameters():
p.requires_grad = False
for p in ref_policy_model.parameters():
p.requires_grad = False
# Compile model, if enabled.
if compile_model:
backend = os.environ.get("TORCH_COMPILE_BACKEND", "inductor")
log.info("Compiling models with torch.compile...")
policy_model.compile(backend=backend)
reward_model.compile(backend=backend)
ref_policy_model.compile(backend=backend)
value_model.compile(backend=backend)
if self._device.type == "cuda":
memory_stats = training.get_memory_stats(device=self._device)
training.log_memory_stats(memory_stats)
return policy_model, value_model, reward_model, ref_policy_model
def _setup_optimizer(
self,
cfg_optimizer: DictConfig,
optimizer_in_bwd: bool = False,
opt_state_dict: Optional[Dict[str, Any]] = None,
) -> Optimizer:
if optimizer_in_bwd:
# Maintain a dict of optims for every parameter.
optim_dict = {
p: config.instantiate(cfg_optimizer, [p])
for p in chain(
self._policy_model.parameters(), self._value_model.parameters()
)
}
# Register optimizer step hooks on the models to run optimizer in backward.
training.register_optim_in_bwd_hooks(
model=self._policy_model, optim_dict=optim_dict
)
training.register_optim_in_bwd_hooks(
model=self._value_model, optim_dict=optim_dict
)
# Create a wrapper for checkpoint save/load of optimizer states when running in backward.
self._optim_ckpt_wrapper = training.create_optim_in_bwd_wrapper(
model=self._policy_model, optim_dict=optim_dict
)
self._optim_ckpt_wrapper = training.create_optim_in_bwd_wrapper(
model=self._value_model, optim_dict=optim_dict
)
# Load optimizer states. If optimizer states are being restored in an optimizer in backward
# run, these need to have been saved with the same setting. Cannot restore from runs that did not
# use optimizer in backward.
if opt_state_dict is not None:
try:
self._optim_ckpt_wrapper.load_state_dict(opt_state_dict)
except BaseException as e:
raise RuntimeError(
"Failed loading in-backward optimizer checkpoints."
"Please make sure run being restored from was using in-backward optimizer."
) from e
log.info("In-backward optimizers are set up.")
return None
else:
optimizer = config.instantiate(
cfg_optimizer,
chain(self._policy_model.parameters(), self._value_model.parameters()),
)
if opt_state_dict:
optimizer.load_state_dict(opt_state_dict)
log.info("Optimizer is initialized.")
return optimizer
def _setup_data(
self, cfg_dataset: DictConfig, shuffle: bool, batch_size: int
) -> Tuple[DistributedSampler, DataLoader]:
"""
All data related setup happens here.
"""
if isinstance(cfg_dataset, ListConfig):
datasets = [
config.instantiate(single_cfg_dataset, tokenizer=self._tokenizer)
for single_cfg_dataset in cfg_dataset
]
ds = ConcatDataset(datasets=datasets)
else:
ds = config.instantiate(cfg_dataset, tokenizer=self._tokenizer)
sampler = DistributedSampler(
ds,
num_replicas=1,
rank=0,
shuffle=shuffle,
seed=0,
)
dataloader = DataLoader(
dataset=ds,
sampler=sampler,
batch_size=batch_size,
# dropping last avoids shape issues with compile + flex attention
drop_last=True,
collate_fn=partial(
padded_collate,
pad_direction="left",
keys_to_pad=["tokens", "labels"],
padding_idx=self._tokenizer.pad_id,
),
)
return sampler, dataloader
def save_checkpoint(
self, epoch: int, is_intermediate_checkpoint: bool = False
) -> None:
"""
Save state dict to file. The recipe save_checkpoint method is responsible for
correctly creating the checkpoint dict and passing to the checkpointer.
"""
policy_ckpt_dict = {training.MODEL_KEY: self._policy_model.state_dict()}
value_ckpt_dict = {training.MODEL_KEY: self._value_model.state_dict()}
# if training is in-progress, checkpoint the optimizer state and rng state as well
if is_intermediate_checkpoint:
policy_ckpt_dict.update(
{
training.SEED_KEY: self.seed,
training.EPOCHS_KEY: self._epochs_run,
training.TOTAL_EPOCHS_KEY: self._total_epochs,
training.MAX_STEPS_KEY: self._total_steps,
training.STEPS_KEY: self._steps_run,
training.RNG_KEY: self._rng.get_state(),
}
)
if not self._optimizer_in_bwd:
policy_ckpt_dict[training.OPT_KEY] = self._optimizer.state_dict()
else:
policy_ckpt_dict[
training.OPT_KEY
] = self._optim_ckpt_wrapper.state_dict()
self._policy_checkpointer.save_checkpoint(
policy_ckpt_dict,
epoch=epoch,
intermediate_checkpoint=is_intermediate_checkpoint,
)
self._value_checkpointer.save_checkpoint(
value_ckpt_dict,
epoch=epoch,
intermediate_checkpoint=False,
)
def _update_recipe_state(self, ckpt_dict: Dict[str, Any]) -> None:
"""
Updates the recipe state from checkpoint.
"""
# If seed or total_steps, or total_epochs don't match,
# warn the user and overwrite.
try:
if (
self.seed != ckpt_dict[training.SEED_KEY]
or self._total_steps != ckpt_dict[training.MAX_STEPS_KEY]
or self._total_epochs != ckpt_dict[training.TOTAL_EPOCHS_KEY]
):
warn(
message="""Configured value for seed, total_steps, or total_epochs
does not match the value stored in checkpoint."""
)
self.seed = training.set_seed(seed=ckpt_dict[training.SEED_KEY])
self._rng.set_state(ckpt_dict[training.RNG_KEY])
self._steps_run = ckpt_dict[training.STEPS_KEY]
self._total_steps = ckpt_dict[training.MAX_STEPS_KEY]
self._total_epochs = ckpt_dict[training.TOTAL_EPOCHS_KEY]
self._epochs_run = ckpt_dict[training.EPOCHS_KEY]
except KeyError as e:
raise KeyError from e(
"Checkpoint does not contain the required keys needed for updating recipe state."
"Are you sure you passed in the right recipe checkpoint?"
)
def generate_trajectory(self, input_ids: torch.Tensor) -> Trajectory:
"""
Generates a trajectory given the current policy and value models, the reference policy model, the reward model,
and batch of inputs. This is done over the following steps:
1: Generate responses, and logits corresponding to the responses using the current policy,
generating (query, response) pairs.
2. Estimate logprobs of the generated responses using the current policy.
3. Estimate values from the generated responses using the current value function.
4. Replace any tokens in the response after the first stop token (usually EOS token) with padding,
producting truncated responses.
5. Run the reward model on the (query, truncated-response) pairs.
6. Mask out all the invalid values in the trajectory due to padding tokens.
Args:
input_ids (torch.Tensor): tensor of input token IDs with shape [b, seq_length]
Returns:
Trajectory: An instance of :class:`~torchtune.rlhf.Trajectory` comprising
the current trajectory.
"""
batch_size, context_length = input_ids.shape
# step 1: generate responses, and logits corresponding to the responses using the current policy
query_responses, logits = generation.generate(
model=self._policy_model,
prompt=input_ids,
max_generated_tokens=self._max_generated_tokens,
temperature=self._temperature,
top_k=self._top_k,
pad_id=self._tokenizer.pad_id,
rng=self._rng,
)
responses = query_responses[:, context_length:].clone()
query_response_padding_masks = query_responses != self._tokenizer.pad_id
# step 1.1 create attention masks and position IDs for any padding tokens in inputs, used for future forward passes
masks = generation.get_causal_mask_from_padding_mask(
query_response_padding_masks
)
position_ids = generation.get_position_ids_from_padding_mask(
query_response_padding_masks
)
del query_response_padding_masks
# step 2. estimate logprobs of the responses using the current policy
logits = logits[:, context_length - 1 :]
logprobs = rlhf.logits_to_logprobs(logits, responses, self._temperature)
del logits
# step 2.1 estimate logprobs of the responses using the reference policy
ref_logits = self._ref_policy_model(
query_responses, input_pos=position_ids, mask=masks
)
ref_logits = rlhf.truncate_sequence_for_logprobs(ref_logits, context_length)
ref_logprobs = rlhf.logits_to_logprobs(ref_logits, responses, self._temperature)
del ref_logits
# step 3. estimate values from the responses using the value function
values = self._value_model(query_responses, input_pos=position_ids, mask=masks)
values = rlhf.truncate_sequence_for_logprobs(values, context_length).squeeze(-1)
# step 4. replace any tokens in the responses after the first stop token (usually EOS token) with padding
# resulting in truncated responses
response_padding_masks, responses = rlhf.truncate_sequence_at_first_stop_token(
responses, self._stop_token_ids, self._tokenizer.pad_id
)
# step 5. run the reward model on the (query, truncated-response) pairs
scores = self._reward_model(
torch.cat([input_ids, responses], dim=1),
input_pos=position_ids,
mask=masks,
)
del responses
# step 5.1 the scores from the reward model are the logits for the last non-padding token in
# each (query, truncated-response) pair
seq_lens = training.get_unmasked_sequence_lengths(response_padding_masks)
scores = scores[torch.arange(batch_size), seq_lens + context_length].squeeze(-1)
# step 5.2 if configured, apply any penalties for sequences without EOS tokens
# or shorter than a certain length
if self._penalise_no_eos or self._min_response_length:
reward_penalty_mask = rlhf.get_reward_penalty_mask(
response_padding_masks,
seq_lens,
self._penalise_no_eos,
self._min_response_length,
)
scores[reward_penalty_mask] = self._reward_penalty
# step 6. mask out all the invalid values in the trajectory due to padding tokens
logprobs[response_padding_masks] = 1.0
ref_logprobs[response_padding_masks] = 1.0
# step 6.1 values are masked out *after* the last valid token in the response
value_seq_idxs = torch.where(
(seq_lens > 0) & (seq_lens < self._max_generated_tokens - 1),
seq_lens + 1,
seq_lens,
)
value_padding_masks = response_padding_masks.clone()
value_padding_masks[
torch.arange(batch_size, device=value_padding_masks.device),
value_seq_idxs,
] = False
values[value_padding_masks] = 0.0
return Trajectory(
query_responses=query_responses,
logprobs=logprobs,
ref_logprobs=ref_logprobs,
values=values,
masks=masks,
position_ids=position_ids,
response_padding_masks=response_padding_masks,
value_padding_masks=value_padding_masks,
value_seq_idxs=value_seq_idxs,
scores=scores,
seq_lens=seq_lens,
)
def generate_trajectory_batched(self, input_ids: torch.Tensor) -> Trajectory:
"""
Generates a ``self.batch_size`` batch of trajectories using `self._forward_batch_size` batch sizes.
See ``generate_trajectory`` for more details.
Args:
input_ids (torch.Tensor): tensor of input token IDs with shape [b, seq_length]
Returns:
Trajectory: An instance of :class:`~torchtune.rlhf.Trajectory`, comprising
the current trajectory.
"""
trajectories: List[Trajectory] = []
with torch.no_grad():
for batch_start in range(0, self.batch_size, self._forward_batch_size):
batch_input_ids = input_ids[
batch_start : batch_start + self._forward_batch_size
]
trajectories.append(self.generate_trajectory(batch_input_ids))
return Trajectory(*map(torch.cat, zip(*trajectories)))
def train(self) -> None:
"""
The core training loop."""
if self._model_compile:
log.info(
"NOTE: torch.compile is enabled and model is compiled in first forward."
"Expect a relatively slow first iteration."
)
# zero out the gradients before starting training
if not self._optimizer_in_bwd:
self._optimizer.zero_grad()
training_completed = False
pbar = tqdm(total=self._total_steps, initial=self._steps_run)
for curr_epoch in range(self._epochs_run, self._total_epochs):
# Update the sampler to ensure data is correctly shuffled across epochs
# in case shuffle is True
self._sampler.set_epoch(curr_epoch)
for _, batch in enumerate(self._dataloader):
batch = batch["tokens"].to(self._device)
_, context_length = batch.shape
# step 1. generate the trajectory using:
# - the current policy (pi_theta)
# - the current value function (V_phi)
# - the reference frozen policy model (pi_theta_0)
trajectory = self.generate_trajectory_batched(batch)
# step 2. get the rewards for the current trajectory. these are based on:
# - the divergence between the current policy and the reference policy
# - the scores from the reward model
rewards, kl, kl_rewards = rlhf.get_rewards_ppo(
trajectory.scores,
trajectory.logprobs,
trajectory.ref_logprobs,
self._kl_coeff,
trajectory.value_seq_idxs,
)
# step 3. estimate the advantages using Generalized Advantage Estimation (GAE)
advantages, returns = rlhf.estimate_advantages(
trajectory.values,
rewards,
self._gamma,
self._lmbda,
masks=~trajectory.response_padding_masks,
)
# step 4. optimise using the PPO objective over multiple epochs
ppo_stats: List[PPOStats] = []
for _ in range(self._ppo_epochs):
batch_idxs = torch.randperm(self.batch_size, device=self._device)
for i in range(0, self.batch_size, self._ppo_batch_size):
mini_batch_idxs = batch_idxs[i : i + self._ppo_batch_size]
batch_ppo_stats: List[PPOStats] = []
for j in range(
0, self._ppo_batch_size, self._ppo_backward_batch_size
):
backward_batch_idxs = mini_batch_idxs[
j : j + self._ppo_backward_batch_size
]
batch_trajectory = Trajectory(
*map(
partial(
torch.index_select,
dim=0,
index=backward_batch_idxs,
),
trajectory,
)
)
batch_ppo_stats.append(
self._ppo_step(
batch_trajectory,
advantages[backward_batch_idxs],
returns[backward_batch_idxs],
context_length,
)
)
del batch_trajectory
ppo_stats.append(PPOStats(*map(sum, zip(*batch_ppo_stats))))
if not self._optimizer_in_bwd:
self._optimizer.step()
self._optimizer.zero_grad(set_to_none=True)
self.global_step += 1
# step 5. profit
self._steps_run += 1
if self._steps_run % self._log_every_n_steps == 0:
self.log_metrics(
trajectory,
PPOStats(*map(torch.stack, zip(*ppo_stats))),
kl,
kl_rewards,
)
self.cleanup_after_step(
trajectory, ppo_stats, advantages, returns, kl, kl_rewards
)
pbar.update(1)
if self._steps_run == self._total_steps:
training_completed = True
break
# save checkpoint at current epoch
self._epochs_run += 1
self.save_checkpoint(
curr_epoch, is_intermediate_checkpoint=not training_completed
)
if training_completed:
return
def _ppo_step(
self,
trajectory: Trajectory,
advantages: torch.Tensor,
returns: torch.Tensor,
context_length: int,
) -> PPOStats:
"""
Perform a single PPO optimisation step over a batch of trajectories and corresponding advantages and returns.
Args:
trajectory (Trajectory): a batch of trajectories
advantages (torch.Tensor): advantages corresponding to the trajectories
returns (torch.Tensor): returns corresponding the trajectories
context_length (int): input ids sequence length
Returns:
PPOStats: An instance of :class:`~torchtune.rlhf.PPOStats`, a NamedTuple containing:
- loss (torch.Tensor): The total PPO loss.
- policy_loss (torch.Tensor): The policy function loss.
- value_loss (torch.Tensor): The value function loss.
- ratios (torch.Tensor): The ratio between the current and old policy probabilities.
- clipfrac (torch.Tensor): The fraction of ratios that were clipped.
- approx_policy_kls: Average estimated KL divergence between the policy before and after the optimisation step.
"""
# estimate logprobs from the policy at the current optimisation step
pi_logits = self._policy_model(
trajectory.query_responses,
input_pos=trajectory.position_ids,
mask=trajectory.masks,
)
pi_logits = rlhf.truncate_sequence_for_logprobs(pi_logits, context_length)
pi_logprobs = rlhf.logits_to_logprobs(
pi_logits, trajectory.query_responses[:, context_length:], self._temperature
)
pi_logprobs[trajectory.response_padding_masks] = 1.0
del pi_logits
# estimate the values from the value function at the current optimisation step
phi_values = self._value_model(
trajectory.query_responses,
input_pos=trajectory.position_ids,
mask=trajectory.masks,
)
phi_values = rlhf.truncate_sequence_for_logprobs(
phi_values, context_length
).squeeze(-1)
phi_values[trajectory.value_padding_masks] = 0.0
# calculate ppo loss
loss, policy_loss, value_loss, ratios, clipfrac = self._loss_fn(
trajectory.logprobs,
pi_logprobs,
advantages,
trajectory.values,
phi_values,
returns,
padding_masks=~trajectory.response_padding_masks,
value_padding_masks=~trajectory.value_padding_masks,