-
Notifications
You must be signed in to change notification settings - Fork 197
/
hf_eval.py
248 lines (221 loc) · 7.48 KB
/
hf_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
from tabulate import tabulate
from transformers import AutoModelForCausalLM, AutoTokenizer
try:
from lm_eval.evaluator import evaluate
from lm_eval.models.huggingface import HFLM
from lm_eval.tasks import get_task_dict
except ImportError:
print("""
Error: The 'lm_eval' module was not found.
To install, follow these steps:
pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git
""")
raise # Re-raise the ImportError
from torchao.quantization import (
autoquant,
fpx_weight_only,
int4_weight_only,
int8_dynamic_activation_int8_weight,
int8_weight_only,
quantize_,
)
from torchao.sparsity import (
semi_sparse_weight,
sparsify_,
)
torch._inductor.config.force_fuse_int_mm_with_mul = True
torch._inductor.config.fx_graph_cache = True
def pretty_print_nested_results(results, precision: int = 6):
def format_value(value):
if isinstance(value, float):
return f"{value:.{precision}f}"
return value
main_table = []
for task, metrics in results["results"].items():
subtable = [[k, format_value(v)] for k, v in metrics.items() if k != "alias"]
subtable.sort(key=lambda x: x[0]) # Sort metrics alphabetically
formatted_subtable = tabulate(subtable, tablefmt="grid")
main_table.append([task, formatted_subtable])
print(tabulate(main_table, headers=["Task", "Metrics"], tablefmt="grid"))
def run_evaluation(
repo_id,
tasks,
limit,
device,
precision,
quantization,
sparsity,
compile,
save,
batch_size,
max_length,
):
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype=precision).to(
device
)
if quantization == "autoquant" and compile:
model = torch.compile(model, mode="max-autotune", fullgraph=True)
if quantization == "int8dq":
quantize_(model, int8_dynamic_activation_int8_weight())
elif quantization == "int8wo":
quantize_(model, int8_weight_only())
elif quantization == "int4wo":
# note cannot quantize this model on cpu and run it on cuda at this time
quantize_(model.to(device=device), int4_weight_only())
elif quantization == "fp6":
quantize_(model, fpx_weight_only(3, 2))
elif quantization == "autoquant":
model = autoquant(model.to(device=device))
elif quantization == "awq":
from torchao.prototype.awq.example import get_calib_dataset
from torchao.utils import TORCH_VERSION_AT_LEAST_2_3
if not TORCH_VERSION_AT_LEAST_2_3:
print("AWQ quantization requires torch2.3+")
exit()
from torchao.prototype.awq import (
AWQObservedLinear,
awq_uintx,
insert_awq_observer_,
)
quant_dtype = torch.uint4
group_size = 64
calibration_limit = 10
calibration_seq_length = 1024
model = model.to(device)
insert_awq_observer_(
model,
calibration_limit,
calibration_seq_length,
quant_dtype=quant_dtype,
group_size=group_size,
)
with torch.no_grad():
calibration_data = get_calib_dataset(
tokenizer=tokenizer,
n_samples=calibration_limit,
block_size=calibration_seq_length,
)
for batch in calibration_data:
model(batch.to(device))
del batch
is_observed_linear = lambda m, fqn: isinstance(m, AWQObservedLinear)
quantize_(
model,
awq_uintx(quant_dtype=quant_dtype, group_size=group_size),
is_observed_linear,
)
if quantization != "autoquant" and compile:
model = torch.compile(model, mode="max-autotune", fullgraph=True)
if sparsity == "semi_sparse":
def all_linear(mod, name):
if isinstance(mod, torch.nn.Linear) and "lm_head" not in name:
return True
return False
torch.sparse.semi_structured._FORCE_CUTLASS = False
sparsify_(model, semi_sparse_weight(), filter_fn=all_linear)
elif sparsity == "semi_sparse_mlp_only":
def all_linear(mod, name):
if (
isinstance(mod, torch.nn.Linear)
and "lm_head" not in name
and "mlp" in name
):
return True
return False
torch.sparse.semi_structured._FORCE_CUTLASS = False
sparsify_(model, semi_sparse_weight(), filter_fn=all_linear)
if sparsity and compile:
model = torch.compile(model, mode="max-autotune", fullgraph=True)
with torch.no_grad():
result = evaluate(
HFLM(
pretrained=model.to(device),
tokenizer=tokenizer,
batch_size=batch_size,
max_length=max_length,
),
get_task_dict(tasks),
limit=limit,
)
pretty_print_nested_results(result)
if save:
# This doesn't work yet: https://github.com/huggingface/transformers/issues/32364
# model.save_pretrained("quantized_model_test", safe_serialization=False)
file_name = repo_id.split("/")[-1] + "-" + quantization + ".pt"
torch.save(model.state_dict(), file_name)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Run HF Model Evaluation")
parser.add_argument(
"--repo_id",
type=str,
default="meta-llama/Meta-Llama-3-8B",
help="Repository ID to download from HF.",
)
parser.add_argument(
"--tasks",
nargs="+",
type=str,
default=["wikitext"],
help="List of lm-eluther tasks to evaluate usage: --tasks task1 task2",
)
parser.add_argument(
"--limit", type=int, default=None, help="Number of eval samples to evaluate"
)
parser.add_argument(
"--precision",
type=lambda x: getattr(torch, x.split(".")[-1]),
default=torch.bfloat16,
help="dtype precision to use",
)
parser.add_argument(
"--device", type=str, default="cuda", help="Device to use for evaluation"
)
parser.add_argument(
"-q",
"--quantization",
default="None",
choices=["int8dq", "int8wo", "int4wo", "autoquant", "awq", "None"],
help="Which quantization technique to apply",
)
parser.add_argument(
"-s",
"--sparsity",
default="None",
choices=["semi_sparse", "semi_sparse_mlp_only", "None"],
help="Which sparsity technique to apply",
)
parser.add_argument(
"--compile", action="store_true", help="Whether to compile the model."
)
parser.add_argument(
"--save", action="store_true", help="Whether to save the model."
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size to use for evaluation, note int8wo and int4wo work best with small batchsizes, int8dq works better with large batchsizes",
)
parser.add_argument(
"--max_length",
type=int,
default=None,
help="Length of text to process at one time",
)
args = parser.parse_args()
run_evaluation(
args.repo_id,
args.tasks,
args.limit,
args.device,
args.precision,
args.quantization,
args.sparsity,
args.compile,
args.save,
args.batch_size,
args.max_length,
)