-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
287 lines (234 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import logging
import math
import os
import sys
import torch
import datasets
import transformers
from transformers import (
CONFIG_MAPPING,
AutoConfig,
AutoTokenizer,
HfArgumentParser,
set_seed,
)
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from args import TrainingArguments, ModelArguments, DataTrainingArguments
from substep_trainer import SubstepTrainer
from utils import get_last_checkpoint_or_last_model, parse_checkpoint_step
from data import load_raw_dataset, preprocess_datasets, load_preprocessed_datasets
from fast_attention import patch_opt
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.22.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# load_datasets
if not training_args.do_train:
data_args.preprocessed_train_datasets = []
if data_args.preprocessed_train_datasets + data_args.preprocessed_validation_datasets:
print("train dataset", data_args.preprocessed_train_datasets)
print("validation dataset", data_args.preprocessed_validation_datasets)
lm_datasets = load_preprocessed_datasets(data_args, model_args)
else:
raw_datasets = load_raw_dataset(data_args, model_args)
lm_datasets = preprocess_datasets(raw_datasets, tokenizer, data_args, training_args)
if training_args.do_train:
if "train" not in lm_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = lm_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
print(f"Total number of training data: {len(train_dataset)}")
if training_args.do_eval:
# max eval sample deleted
eval_dataset = {}
for key in lm_datasets.keys():
if "validation" in key:
if data_args.max_eval_samples is not None:
max_eval_samples = min(data_args.max_eval_samples, len(lm_datasets[key]))
eval_dataset[key] = lm_datasets[key].select(range(max_eval_samples))
else:
eval_dataset[key] = lm_datasets[key]
# Detecting last checkpoint.
last_checkpoint = None
if training_args.resume_from_checkpoint:
last_checkpoint = get_last_checkpoint_or_last_model(training_args.output_dir)
if last_checkpoint is None:
print(f"Didn't find a checkpoint in {training_args.output_dir}. Starting training from scratch")
else:
print(f"Found checkpoint {last_checkpoint}. Using this checkpoint to resume training.")
# Set seed before initializing model.
set_seed(training_args.seed)
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
elif model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
# Update config with AutoCompressor parameters
config.summary_length = training_args.summary_length
config.accumulate_summary = training_args.accumulate_summary
config.segment_gradient_checkpointing = training_args.segment_gradient_checkpointing
# Create model
if "llama" in (model_args.model_name_or_path or model_args.config_name).lower():
from auto_compressor import LlamaAutoCompressorModel
AutoCompressorModel = LlamaAutoCompressorModel
else:
from auto_compressor import AutoCompressorModel
if model_args.model_name_or_path:
half_dtype = (torch.bfloat16 if training_args.bf16 else (torch.float16 if training_args.fp16 else None))
model = AutoCompressorModel.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
torch_dtype=(half_dtype if model_args.lora or model_args.lora_path else None),
)
else:
model = AutoCompressorModel.from_config(config)
n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
# Extend positional embeddings
if training_args.max_position_embeddings is not None:
embed = model.model.decoder.embed_positions
max_pos = model.config.max_position_embeddings
new_max_pos = training_args.max_position_embeddings
multiply = math.ceil(new_max_pos / embed.num_embeddings)
embed.weight.data = torch.cat([
embed.weight[:-max_pos],
embed.weight[-max_pos:].repeat(multiply, 1)
], dim=0)
embed.num_embeddings = embed.weight.size(0)
model.config.max_position_embeddings = max_pos * multiply
logger.info(f"Positional embeddings increased to {embed.num_embeddings}")
if model_args.lora or model_args.lora_path:
from peft import PeftModel, get_peft_model, LoraConfig, TaskType
if model_args.lora_path:
logger.info(f"Loading LoRA model from {model_args.lora_path}")
model = PeftModel.from_pretrained(model, model_args.lora_path)
else:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=model_args.lora_r,
lora_alpha=model_args.lora_alpha,
lora_dropout=model_args.lora_dropout,
target_modules=model_args.lora_target_modules,
modules_to_save=model_args.lora_modules_to_save,
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
if training_args.fast_attention:
logger.info("Patching (experimental) fast attention")
patch_opt(model)
tokenizer.padding = True
# Initialize our Trainer
trainer = SubstepTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
)
if last_checkpoint is not None:
trainer._load_from_checkpoint(last_checkpoint)
else:
logger.info("Using a model loaded from scratch!")
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=last_checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
print(model.state_dict)
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(eval_dataset)
if training_args.do_train:
metrics["global_step"] = trainer.state.global_step
else:
if last_checkpoint is None:
metrics["global_step"] = 0
last_checkpoint = training_args.output_dir
else:
metrics["global_step"] = parse_checkpoint_step(last_checkpoint)
metrics["model_name"] = last_checkpoint
if training_args.do_train:
trainer.log_metrics(f"eval")
trainer.save_metrics(f"eval")
else:
if last_checkpoint is not None:
step = parse_checkpoint_step(last_checkpoint)
else:
step = 0
segment_string = "-".join([str(i) for i in training_args.segment_lengths])
metrics["segment_lengths"] = segment_string
trainer.log_metrics(f"eval_step{step}_{segment_string}", metrics)
trainer.save_metrics(f"eval_step{step}_{segment_string}", metrics)
if __name__ == "__main__":
main()