-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathauto_compressor.py
340 lines (266 loc) · 15 KB
/
auto_compressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import logging
import os
from typing import Optional, Union, List, Tuple, Dict
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import OPTForCausalLM
from modeling_flash_llama import LlamaForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
import os
logger = logging.getLogger(__name__)
PastKVType = Optional[Tuple[Tuple[torch.FloatTensor]]]
@dataclass
class SummaryConfig:
"""Keep track of token constitution of current input sequence"""
softprompt_length: int = 0
past_key_values_softprompt_length: int = 0
summary_length: int = 0
def reset(self):
self.softprompt_length = 0
self.past_key_values_softprompt_length = 0
self.summary_length = 0
@dataclass
class CausalACOutputWithPast(CausalLMOutputWithPast):
softprompt: Optional[torch.FloatTensor]= None
class AutoCompressorMixin:
"""Mixin class to turn a AutoModelForCausalLM into an AutoCompressor."""
def setup_autocompressor(self, config):
"""Call this function in the subclass __init__ to initialize the autocompressor. Override for custom behaviour"""
assert hasattr(self.config, 'summary_length'), "Compressor requires a summary_length config parameter"
self.summary_config = SummaryConfig()
if config.summary_length > 0:
self.embed_summary = nn.Embedding(config.summary_length, self.get_input_embeddings().embedding_dim)
input_embeds = self.get_input_embeddings()
self.embed_summary.weight.data[:,:] = (
input_embeds.weight[config.eos_token_id]
)
def forward_segment(
self,
softprompt: torch.FloatTensor,
segment_embeds: torch.FloatTensor,
summary_token_embeds: torch.FloatTensor,
segment_attention_mask: torch.LongTensor,
past_key_values: PastKVType,
output_hidden_states: bool,
use_cache: bool,
output_attentions: bool,
segment_gradient_checkpointing: bool,
past_key_values_softprompt_length: int
):
bsz = segment_embeds.size(0)
summary_length = summary_token_embeds.size(1)
if past_key_values_softprompt_length > 0: # Softprompt should already be in past_key_values
softprompt_length = 0
segment_embeds = torch.cat([segment_embeds, summary_token_embeds], dim=1)
device, attn_dtype = segment_embeds.device, segment_attention_mask.dtype
segment_attention_mask = torch.cat([
torch.ones(bsz, past_key_values_softprompt_length, device=device, dtype=attn_dtype),
segment_attention_mask,
torch.ones(bsz, summary_length, device=device, dtype=attn_dtype)
], dim=1)
else:
softprompt_length = softprompt.size(1)
segment_embeds = torch.cat([softprompt, segment_embeds, summary_token_embeds], dim=1)
device, attn_dtype = segment_embeds.device, segment_attention_mask.dtype
segment_attention_mask = torch.cat([
torch.ones(bsz, softprompt_length, device=device, dtype=attn_dtype),
segment_attention_mask,
torch.ones(bsz, summary_length, device=device, dtype=attn_dtype)
], dim=1)
def decoder(segment_embeds,
segment_attention_mask,
segment_past_key_values,
softprompt_length,
past_key_values_softprompt_length,
summary_length):
self.summary_config.softprompt_length = softprompt_length
self.summary_config.past_key_values_softprompt_length = past_key_values_softprompt_length
self.summary_config.summary_length = summary_length
return self.model(
inputs_embeds=segment_embeds,
attention_mask=segment_attention_mask,
past_key_values=segment_past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,)
if segment_gradient_checkpointing:
outputs = torch.utils.checkpoint.checkpoint(
decoder, segment_embeds, segment_attention_mask, past_key_values,
softprompt_length, past_key_values_softprompt_length, summary_length,
use_reentrant=False)
else:
outputs = decoder(
segment_embeds, segment_attention_mask, past_key_values,
softprompt_length, past_key_values_softprompt_length, summary_length)
total_length = outputs.last_hidden_state.size(1)
segment_last_hiddens = (
outputs.last_hidden_state[:, softprompt_length:total_length - summary_length]
)
new_softprompt = outputs.last_hidden_state[:, total_length - summary_length:]
return outputs, segment_last_hiddens, new_softprompt
def get_past_key_values_len(self, past_key_values):
return 0 if past_key_values is None else past_key_values[0][0].size(2)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Union[PastKVType, Dict] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
segment_lengths: Optional[Union[List[int], int]] = None,
softprompt: Optional[torch.FloatTensor] = None,
output_softprompt: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
# We formulate the past_key_values as a tuple where the second entry is the softprompt already in the past key values
if past_key_values is not None and isinstance(past_key_values, dict):
# Replace softprompt in direct argument with the softprompt in past_key_values
past_key_values, softprompt = past_key_values["past_key_values"], past_key_values["softprompt"]
past_key_values_softprompt_length = softprompt.size(1)
else:
past_key_values_softprompt_length = 0
past_key_values_length = self.get_past_key_values_len(past_key_values) - past_key_values_softprompt_length
if head_mask is not None:
raise ValueError("Compressor does not support head_mask")
if inputs_embeds is not None and input_ids is not None:
raise ValueError("Compressor does not support both input_ids and input_embeds")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None and input_ids is not None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if self.config.summary_length > 0:
summary_token_ids = torch.arange(self.config.summary_length, dtype=torch.long, device=inputs_embeds.device).unsqueeze(0).expand(inputs_embeds.size(0), -1)
summary_token_embeds = self.embed_summary(summary_token_ids).to(inputs_embeds.dtype)
else:
summary_token_embeds = inputs_embeds[:,:0]
# If no past_key_values are given, we will process the sequence in multiple segments
if past_key_values is None:
segment_lengths = segment_lengths if segment_lengths is not None else input_ids.size(1)
if attention_mask is None:
attention_mask = torch.ones(
inputs_embeds.size(0), inputs_embeds.size(1), dtype=torch.long, device=inputs_embeds.device
)
inputs_embeds_list = torch.split(inputs_embeds, segment_lengths, dim=1)
attention_mask_list = torch.split(attention_mask, segment_lengths, dim=1)
summary_token_embeds_list = (
(summary_token_embeds,) * (len(inputs_embeds_list) - 1) +
(summary_token_embeds if output_softprompt else summary_token_embeds[:,:0,:],)
)
# With past_key_values we will process the input in a single pass (for generation), except when generting summary vectors
else:
if attention_mask is None:
attention_mask = torch.ones(
inputs_embeds.size(0), inputs_embeds.size(1) + past_key_values_length, dtype=torch.long, device=inputs_embeds.device
)
if use_cache and past_key_values_length + inputs_embeds.size(1) == segment_lengths:
output_softprompt = True
# If we use cache and output softprompt, we need to add a dummy segment to the end to get the past key values of the softprompt
inputs_embeds_list = (inputs_embeds, inputs_embeds[:,:0,:])
attention_mask_list = (attention_mask, attention_mask[:,:0])
summary_token_embeds_list = (summary_token_embeds, summary_token_embeds[:,:0,:])
else:
inputs_embeds_list = (inputs_embeds,)
attention_mask_list = (attention_mask,)
summary_token_embeds_list = (summary_token_embeds if output_softprompt else summary_token_embeds[:,:0,:],)
last_hidden_state_list = []
output_attentions_list = []
output_hidden_states_list = []
if softprompt is None:
softprompt = inputs_embeds[:,:0,:]
for step, summary_token_embeds in enumerate(summary_token_embeds_list):
is_last_step = step == len(inputs_embeds_list) - 1
segment_gradient_checkpointing = (
getattr(self.config, "segment_gradient_checkpointing", False) and
self.training and not is_last_step
)
outputs, segment_hidden_states, new_softprompt = self.forward_segment(
softprompt.to(inputs_embeds.dtype), inputs_embeds_list[step], summary_token_embeds, attention_mask_list[step],
past_key_values, output_hidden_states, use_cache, output_attentions,
segment_gradient_checkpointing, past_key_values_softprompt_length)
last_hidden_state_list.append(segment_hidden_states)
if self.config.accumulate_summary:
softprompt = torch.cat([softprompt, new_softprompt], dim=1)
elif new_softprompt.size(1) > 0:
softprompt = new_softprompt
output_attentions_list.append(outputs.attentions)
output_hidden_states_list.append(outputs.hidden_states)
# No past key values after first step
past_key_values = None
past_key_values_softprompt_length = 0
# Output past values of last segment
past_key_values = outputs.past_key_values
# Reset placeholder positions
self.summary_config.reset()
last_hiddens = torch.cat(last_hidden_state_list, dim=1)
logits = self.lm_head(last_hiddens).contiguous()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
output = CausalACOutputWithPast(
loss=loss,
logits=logits,
past_key_values={"past_key_values": past_key_values, "softprompt": softprompt},
hidden_states=output_hidden_states_list if output_hidden_states_list[0] is not None else None,
attentions=output_attentions_list if output_attentions_list[0] is not None else None,
softprompt=softprompt,
)
if return_dict:
return output
else:
return tuple(output.values())
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
model_inputs = super().prepare_inputs_for_generation(input_ids, past_key_values, attention_mask, inputs_embeds, **kwargs)
model_inputs["softprompt"] = kwargs.get("softprompt", None)
model_inputs["segment_lengths"] = kwargs.get("segment_lengths", None)
return model_inputs
class OPTLearnedPositionalEmbeddingWithPadding(nn.Embedding):
"""Overwrite the default OPTLearnedPositionalEmbedding to disable position on summary tokens"""
def __init__(self, num_embeddings: int, embedding_dim: int, summary_config: Optional[SummaryConfig] = None):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
super().__init__(num_embeddings + 2, embedding_dim, padding_idx=1)
self.summary_config = summary_config if summary_config is not None else SummaryConfig()
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
attention_mask = attention_mask.long()
bsz = attention_mask.size(0)
left_placeholder = torch.ones(bsz, self.summary_config.softprompt_length, dtype=torch.long, device=attention_mask.device) # <pad> -> zero vector
right_placeholder = torch.ones(bsz, self.summary_config.summary_length, dtype=torch.long, device=attention_mask.device) # <pad> -> zero vector
total_softprompt_length = self.summary_config.softprompt_length + self.summary_config.past_key_values_softprompt_length
attention_mask = attention_mask[:, total_softprompt_length : attention_mask.size(1)-self.summary_config.summary_length]
positions = attention_mask.cumsum(dim=1) * attention_mask + 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length - self.summary_config.past_key_values_softprompt_length :]
positions = torch.cat([left_placeholder, positions, right_placeholder], dim=1)
return super().forward(positions)
class OPTAutoCompressorModel(AutoCompressorMixin, OPTForCausalLM):
def __init__(self, config):
super().__init__(config)
self.setup_autocompressor(config)
# Custom positional embeddings
self.model.decoder.embed_positions = OPTLearnedPositionalEmbeddingWithPadding(
config.max_position_embeddings, config.hidden_size, summary_config=self.summary_config
)
# Initialize weights and apply final processing
self.post_init()
# For backwards compatibility
AutoCompressorModel = OPTAutoCompressorModel
class LlamaAutoCompressorModel(AutoCompressorMixin, LlamaForCausalLM):
def __init__(self, config):
super().__init__(config)
self.setup_autocompressor(config)
# Initialize weights and apply final processing
self.post_init()
def get_past_key_values_len(self, past_key_values):
# modeling_flash_llama has slightly different layout of past key vlaues
return 0 if past_key_values is None else past_key_values[0][1]