-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimilarity-matrix.py
198 lines (164 loc) · 7.47 KB
/
similarity-matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from libfmp.b import FloatingBox
import numpy as np
import os
import sys
import librosa
from scipy import signal
from matplotlib import pyplot as plt
import matplotlib.gridspec as gridspec
import IPython.display as ipd
import pandas as pd
from numba import jit
import libfmp.c6
import libfmp.c4
import libfmp.c3
import libfmp.c2
import libfmp.b
sys.path.append('..')
# Generate normalized feature sequence
K = 4
M = 100
r = np.arange(M)
b1 = np.zeros((K, M))
b1[0, :] = r
b1[1, :] = M-r
b2 = np.ones((K, M))
X = np.concatenate((b1, b1, np.roll(b1, 2, axis=0), b2, b1), axis=1)
X = libfmp.c3.normalize_feature_sequence(X, norm='2', threshold=0.001)
# Compute SSM
S = np.dot(np.transpose(X), X)
# Visualization
cmap = 'gray_r'
fig, ax = plt.subplots(2, 2, gridspec_kw={'width_ratios': [1, 0.05],
'height_ratios': [0.2, 1]}, figsize=(4.5, 5))
libfmp.b.plot_matrix(X, Fs=1, ax=[ax[0, 0], ax[0, 1]], cmap=cmap,
xlabel='Time (frames)', ylabel='', title='Feature sequence')
libfmp.b.plot_matrix(S, Fs=1, ax=[ax[1, 0], ax[1, 1]], cmap=cmap,
title='SSM', xlabel='Time (frames)', ylabel='Time (frames)', colorbar=True)
plt.tight_layout()
cmap = libfmp.b.compressed_gray_cmap(alpha=-1000)
fig, ax = plt.subplots(2, 2, gridspec_kw={'width_ratios': [1, 0.05],
'height_ratios': [0.2, 1]}, figsize=(4.5, 5))
libfmp.b.plot_matrix(X, Fs=1, ax=[ax[0,0], ax[0,1]], cmap=cmap,
xlabel='Time (frames)', ylabel='', title='Feature sequence')
libfmp.b.plot_matrix(S, Fs=1, ax=[ax[1,0], ax[1,1]], cmap=cmap,
title='SSM', xlabel='Time (frames)', ylabel='Time (frames)', colorbar=True);
plt.tight_layout()
# def compute_sm_dot(X, Y):
# S = np.dot(np.transpose(X), Y)
# return S
# def plot_feature_ssm(X, Fs_X, S, Fs_S, ann, duration, color_ann=None,
# title='', label='Time (seconds)', time=True,
# figsize=(5, 6), fontsize=10, clim_X=None, clim=None):
# """Plot SSM along with feature representation and annotations (standard setting is time in seconds)
# Notebook: C4/C4S2_SSM.ipynb
# Args:
# X: Feature representation
# Fs_X: Feature rate of ``X``
# S: Similarity matrix (SM)
# Fs_S: Feature rate of ``S``
# ann: Annotaions
# duration: Duration
# color_ann: Color annotations (see :func:`libfmp.b.b_plot.plot_segments`) (Default value = None)
# title: Figure title (Default value = '')
# label: Label for time axes (Default value = 'Time (seconds)')
# time: Display time axis ticks or not (Default value = True)
# figsize: Figure size (Default value = (5, 6))
# fontsize: Font size (Default value = 10)
# clim_X: Color limits for matrix X (Default value = None)
# clim: Color limits for matrix ``S`` (Default value = None)
# Returns:
# fig: Handle for figure
# ax: Handle for axes
# """
# cmap = libfmp.b.compressed_gray_cmap(alpha=-10)
# fig, ax = plt.subplots(3, 3, gridspec_kw={'width_ratios': [0.1, 1, 0.05],
# 'wspace': 0.2,
# 'height_ratios': [0.3, 1, 0.1]},
# figsize=figsize)
# libfmp.b.plot_matrix(X, Fs=Fs_X, ax=[ax[0, 1], ax[0, 2]], clim=clim_X,
# xlabel='', ylabel='', title=title)
# ax[0, 0].axis('off')
# libfmp.b.plot_matrix(S, Fs=Fs_S, ax=[ax[1, 1], ax[1, 2]], cmap=cmap, clim=clim,
# title='', xlabel='', ylabel='', colorbar=True)
# ax[1, 1].set_xticks([])
# ax[1, 1].set_yticks([])
# libfmp.b.plot_segments(ann, ax=ax[2, 1], time_axis=time, fontsize=fontsize,
# colors=color_ann,
# time_label=label, time_max=duration*Fs_X)
# ax[2, 2].axis('off'), ax[2, 0].axis('off')
# libfmp.b.plot_segments(ann, ax=ax[1, 0], time_axis=time, fontsize=fontsize,
# direction='vertical', colors=color_ann,
# time_label=label, time_max=duration*Fs_X)
# return fig, ax
# # Waveform
# fn_wav = 'rap.wav'
# Fs = 22050
# x, Fs = librosa.load(fn_wav, Fs)
# x_duration = (x.shape[0])/Fs
# # Chroma Feature Sequence
# N, H = 4096, 1024
# chromagram = librosa.feature.chroma_stft(
# y=x, sr=Fs, tuning=0, norm=2, hop_length=H, n_fft=N)
# X, Fs_X = libfmp.c3.smooth_downsample_feature_sequence(
# chromagram, Fs/H, filt_len=41, down_sampling=10)
# # Annotation
# filename = 'FMP_C4_Audio_Brahms_HungarianDances-05_Ormandy.csv'
# fn_ann = os.path.join('..', 'data', 'C4', filename)
# ann, color_ann = libfmp.c4.read_structure_annotation(
# fn_ann, fn_ann_color=filename)
# ann_frames = libfmp.c4.convert_structure_annotation(ann, Fs=Fs_X)
# # SSM
# X = libfmp.c3.normalize_feature_sequence(X, norm='2', threshold=0.001)
# S = compute_sm_dot(X, X)
# fig, ax = plot_feature_ssm(X, 1, S, 1, ann_frames, x_duration*Fs_X, color_ann=color_ann,
# clim_X=[0, 1], clim=[0, 1], label='Time (frames)',
# title='Chroma feature (Fs=%0.2f)' % Fs_X)
# float_box = libfmp.b.FloatingBox()
# # MFCC-based feature sequence
# N, H = 2048, 1024
# X_MFCC = librosa.feature.mfcc(y=x, sr=Fs, hop_length=H, n_fft=N)
# coef = np.arange(0, 20)
# X_MFCC_upper = X_MFCC[coef, :]
# X, Fs_X = libfmp.c3.smooth_downsample_feature_sequence(
# X_MFCC_upper, Fs/H, filt_len=41, down_sampling=10)
# X = libfmp.c3.normalize_feature_sequence(X, norm='2', threshold=0.001)
# S = compute_sm_dot(X, X)
# ann_frames = libfmp.c4.convert_structure_annotation(ann, Fs=Fs_X)
# fig, ax = plot_feature_ssm(X, 1, S, 1, ann_frames, x_duration*Fs_X, color_ann=color_ann,
# title='MFCC (20 coefficients, Fs=%0.2f)' % Fs_X, label='Time (frames)')
# float_box.add_fig(fig)
# # MFCC-based feature sequence only using coefficients 4 to 14
# coef = np.arange(4, 15)
# X_MFCC_upper = X_MFCC[coef, :]
# X, Fs_X = libfmp.c3.smooth_downsample_feature_sequence(
# X_MFCC_upper, Fs/H, filt_len=41, down_sampling=10)
# X = libfmp.c3.normalize_feature_sequence(X, norm='2', threshold=0.001)
# S = compute_sm_dot(X, X)
# ann_frames = libfmp.c4.convert_structure_annotation(ann, Fs=Fs_X)
# fig, ax = plot_feature_ssm(X, 1, S, 1, ann_frames, x_duration*Fs_X,
# color_ann=color_ann, label='Time (frames)',
# title='MFCC (coefficients 4 to 14, Fs=%0.2f)' % Fs_X)
# float_box.add_fig(fig)
# float_box.show()
# Tempogram feature sequence
# nov, Fs_nov = libfmp.c6.compute_novelty_spectrum(
# x, Fs=Fs, N=2048, H=512, gamma=100, M=10, norm=1)
# nov, Fs_nov = libfmp.c6.resample_signal(nov, Fs_in=Fs_nov, Fs_out=100)
# N, H = 1000, 100
# X, T_coef, F_coef_BPM = libfmp.c6.compute_tempogram_fourier(
# nov, Fs_nov, N=N, H=H, Theta=np.arange(30, 601))
# octave_bin = 12
# tempogram_F = np.abs(X)
# output = libfmp.c6.compute_cyclic_tempogram(
# tempogram_F, F_coef_BPM, octave_bin=octave_bin)
# X = output[0]
# F_coef_scale = output[1]
# Fs_X = Fs_nov/H
# X = libfmp.c3.normalize_feature_sequence(X, norm='2', threshold=0.001)
# S = compute_sm_dot(X, X)
# ann_frames = libfmp.c4.convert_structure_annotation(ann, Fs=Fs_X)
# fig, ax = plot_feature_ssm(X, 1, S, 1, ann_frames, x_duration*Fs_X, color_ann=color_ann,
# title='Tempogram (Fs=%0.2f)' % Fs_X, label='Time (frames)')
if (__name__ == '__main__'):
Statements only executed when run as a script