-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathyolo_v3_tiny.py
100 lines (78 loc) · 3.94 KB
/
yolo_v3_tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
from yolo_v3 import _conv2d_fixed_padding, _fixed_padding, _get_size, \
_detection_layer, _upsample
slim = tf.contrib.slim
_BATCH_NORM_DECAY = 0.9
_BATCH_NORM_EPSILON = 1e-05
_LEAKY_RELU = 0.1
_ANCHORS = [(10, 14), (23, 27), (37, 58),
(81, 82), (135, 169), (344, 319)]
def yolo_v3_tiny(inputs, num_classes, is_training=False, data_format='NCHW', reuse=False):
"""
Creates YOLO v3 tiny model.
:param inputs: a 4-D tensor of size [batch_size, height, width, channels].
Dimension batch_size may be undefined. The channel order is RGB.
:param num_classes: number of predicted classes.
:param is_training: whether is training or not.
:param data_format: data format NCHW or NHWC.
:param reuse: whether or not the network and its variables should be reused.
:return:
"""
# it will be needed later on
img_size = inputs.get_shape().as_list()[1:3]
# transpose the inputs to NCHW
if data_format == 'NCHW':
inputs = tf.transpose(inputs, [0, 3, 1, 2])
# normalize values to range [0..1]
inputs = inputs / 255
# set batch norm params
batch_norm_params = {
'decay': _BATCH_NORM_DECAY,
'epsilon': _BATCH_NORM_EPSILON,
'scale': True,
'is_training': is_training,
'fused': None, # Use fused batch norm if possible.
}
# Set activation_fn and parameters for conv2d, batch_norm.
with slim.arg_scope([slim.conv2d, slim.batch_norm, _fixed_padding, slim.max_pool2d], data_format=data_format):
with slim.arg_scope([slim.conv2d, slim.batch_norm, _fixed_padding], reuse=reuse):
with slim.arg_scope([slim.conv2d],
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
biases_initializer=None,
activation_fn=lambda x: tf.nn.leaky_relu(x, alpha=_LEAKY_RELU)):
with tf.variable_scope('yolo-v3-tiny'):
for i in range(6):
inputs = _conv2d_fixed_padding(
inputs, 16 * pow(2, i), 3)
if i == 4:
route_1 = inputs
if i == 5:
inputs = slim.max_pool2d(
inputs, [2, 2], stride=1, padding="SAME", scope='pool2')
else:
inputs = slim.max_pool2d(
inputs, [2, 2], scope='pool2')
inputs = _conv2d_fixed_padding(inputs, 1024, 3)
inputs = _conv2d_fixed_padding(inputs, 256, 1)
route_2 = inputs
inputs = _conv2d_fixed_padding(inputs, 512, 3)
# inputs = _conv2d_fixed_padding(inputs, 255, 1)
detect_1 = _detection_layer(
inputs, num_classes, _ANCHORS[3:6], img_size, data_format)
detect_1 = tf.identity(detect_1, name='detect_1')
inputs = _conv2d_fixed_padding(route_2, 128, 1)
upsample_size = route_1.get_shape().as_list()
inputs = _upsample(inputs, upsample_size, data_format)
inputs = tf.concat([inputs, route_1],
axis=1 if data_format == 'NCHW' else 3)
inputs = _conv2d_fixed_padding(inputs, 256, 3)
# inputs = _conv2d_fixed_padding(inputs, 255, 1)
detect_2 = _detection_layer(
inputs, num_classes, _ANCHORS[0:3], img_size, data_format)
detect_2 = tf.identity(detect_2, name='detect_2')
detections = tf.concat([detect_1, detect_2], axis=1)
detections = tf.identity(detections, name='detections')
return detections