-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
/
Copy pathtest_frame.py
270 lines (221 loc) · 9.54 KB
/
test_frame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# -*- coding: utf-8 -*-
# pylint: disable-msg=E1101,W0612
from operator import methodcaller
from copy import deepcopy
from distutils.version import LooseVersion
import pytest
import numpy as np
import pandas as pd
from pandas import Series, DataFrame, date_range, MultiIndex
from pandas.compat import range
from pandas.util.testing import (assert_series_equal,
assert_frame_equal,
assert_almost_equal)
import pandas.util.testing as tm
import pandas.util._test_decorators as td
from .test_generic import Generic
try:
import xarray
_XARRAY_INSTALLED = True
except ImportError:
_XARRAY_INSTALLED = False
class TestDataFrame(Generic):
_typ = DataFrame
_comparator = lambda self, x, y: assert_frame_equal(x, y)
def test_rename_mi(self):
df = DataFrame([
11, 21, 31
], index=MultiIndex.from_tuples([("A", x) for x in ["a", "B", "c"]]))
df.rename(str.lower)
def test_set_axis_name(self):
df = pd.DataFrame([[1, 2], [3, 4]])
funcs = ['_set_axis_name', 'rename_axis']
for func in funcs:
result = methodcaller(func, 'foo')(df)
assert df.index.name is None
assert result.index.name == 'foo'
result = methodcaller(func, 'cols', axis=1)(df)
assert df.columns.name is None
assert result.columns.name == 'cols'
def test_set_axis_name_mi(self):
df = DataFrame(
np.empty((3, 3)),
index=MultiIndex.from_tuples([("A", x) for x in list('aBc')]),
columns=MultiIndex.from_tuples([('C', x) for x in list('xyz')])
)
level_names = ['L1', 'L2']
funcs = ['_set_axis_name', 'rename_axis']
for func in funcs:
result = methodcaller(func, level_names)(df)
assert result.index.names == level_names
assert result.columns.names == [None, None]
result = methodcaller(func, level_names, axis=1)(df)
assert result.columns.names == ["L1", "L2"]
assert result.index.names == [None, None]
def test_nonzero_single_element(self):
# allow single item via bool method
df = DataFrame([[True]])
assert df.bool()
df = DataFrame([[False]])
assert not df.bool()
df = DataFrame([[False, False]])
pytest.raises(ValueError, lambda: df.bool())
pytest.raises(ValueError, lambda: bool(df))
def test_get_numeric_data_preserve_dtype(self):
# get the numeric data
o = DataFrame({'A': [1, '2', 3.]})
result = o._get_numeric_data()
expected = DataFrame(index=[0, 1, 2], dtype=object)
self._compare(result, expected)
def test_metadata_propagation_indiv(self):
# groupby
df = DataFrame(
{'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
'C': np.random.randn(8),
'D': np.random.randn(8)})
result = df.groupby('A').sum()
self.check_metadata(df, result)
# resample
df = DataFrame(np.random.randn(1000, 2),
index=date_range('20130101', periods=1000, freq='s'))
result = df.resample('1T')
self.check_metadata(df, result)
# merging with override
# GH 6923
_metadata = DataFrame._metadata
_finalize = DataFrame.__finalize__
np.random.seed(10)
df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=['a', 'b'])
df2 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=['c', 'd'])
DataFrame._metadata = ['filename']
df1.filename = 'fname1.csv'
df2.filename = 'fname2.csv'
def finalize(self, other, method=None, **kwargs):
for name in self._metadata:
if method == 'merge':
left, right = other.left, other.right
value = getattr(left, name, '') + '|' + getattr(right,
name, '')
object.__setattr__(self, name, value)
else:
object.__setattr__(self, name, getattr(other, name, ''))
return self
DataFrame.__finalize__ = finalize
result = df1.merge(df2, left_on=['a'], right_on=['c'], how='inner')
assert result.filename == 'fname1.csv|fname2.csv'
# concat
# GH 6927
DataFrame._metadata = ['filename']
df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=list('ab'))
df1.filename = 'foo'
def finalize(self, other, method=None, **kwargs):
for name in self._metadata:
if method == 'concat':
value = '+'.join([getattr(
o, name) for o in other.objs if getattr(o, name, None)
])
object.__setattr__(self, name, value)
else:
object.__setattr__(self, name, getattr(other, name, None))
return self
DataFrame.__finalize__ = finalize
result = pd.concat([df1, df1])
assert result.filename == 'foo+foo'
# reset
DataFrame._metadata = _metadata
DataFrame.__finalize__ = _finalize
def test_set_attribute(self):
# Test for consistent setattr behavior when an attribute and a column
# have the same name (Issue #8994)
df = DataFrame({'x': [1, 2, 3]})
df.y = 2
df['y'] = [2, 4, 6]
df.y = 5
assert df.y == 5
assert_series_equal(df['y'], Series([2, 4, 6], name='y'))
@pytest.mark.skipif(not _XARRAY_INSTALLED or _XARRAY_INSTALLED and
LooseVersion(xarray.__version__) <
LooseVersion('0.10.0'),
reason='xarray >= 0.10.0 required')
@pytest.mark.parametrize(
"index", ['FloatIndex', 'IntIndex',
'StringIndex', 'UnicodeIndex',
'DateIndex', 'PeriodIndex',
'CategoricalIndex', 'TimedeltaIndex'])
def test_to_xarray_index_types(self, index):
from xarray import Dataset
index = getattr(tm, 'make{}'.format(index))
df = DataFrame({'a': list('abc'),
'b': list(range(1, 4)),
'c': np.arange(3, 6).astype('u1'),
'd': np.arange(4.0, 7.0, dtype='float64'),
'e': [True, False, True],
'f': pd.Categorical(list('abc')),
'g': pd.date_range('20130101', periods=3),
'h': pd.date_range('20130101',
periods=3,
tz='US/Eastern')}
)
df.index = index(3)
df.index.name = 'foo'
df.columns.name = 'bar'
result = df.to_xarray()
assert result.dims['foo'] == 3
assert len(result.coords) == 1
assert len(result.data_vars) == 8
assert_almost_equal(list(result.coords.keys()), ['foo'])
assert isinstance(result, Dataset)
# idempotency
# categoricals are not preserved
# datetimes w/tz are not preserved
# column names are lost
expected = df.copy()
expected['f'] = expected['f'].astype(object)
expected['h'] = expected['h'].astype('datetime64[ns]')
expected.columns.name = None
assert_frame_equal(result.to_dataframe(), expected,
check_index_type=False, check_categorical=False)
@td.skip_if_no('xarray', min_version='0.7.0')
def test_to_xarray(self):
from xarray import Dataset
df = DataFrame({'a': list('abc'),
'b': list(range(1, 4)),
'c': np.arange(3, 6).astype('u1'),
'd': np.arange(4.0, 7.0, dtype='float64'),
'e': [True, False, True],
'f': pd.Categorical(list('abc')),
'g': pd.date_range('20130101', periods=3),
'h': pd.date_range('20130101',
periods=3,
tz='US/Eastern')}
)
df.index.name = 'foo'
result = df[0:0].to_xarray()
assert result.dims['foo'] == 0
assert isinstance(result, Dataset)
# available in 0.7.1
# MultiIndex
df.index = pd.MultiIndex.from_product([['a'], range(3)],
names=['one', 'two'])
result = df.to_xarray()
assert result.dims['one'] == 1
assert result.dims['two'] == 3
assert len(result.coords) == 2
assert len(result.data_vars) == 8
assert_almost_equal(list(result.coords.keys()), ['one', 'two'])
assert isinstance(result, Dataset)
result = result.to_dataframe()
expected = df.copy()
expected['f'] = expected['f'].astype(object)
expected['h'] = expected['h'].astype('datetime64[ns]')
expected.columns.name = None
assert_frame_equal(result,
expected,
check_index_type=False)
def test_deepcopy_empty(self):
# This test covers empty frame copying with non-empty column sets
# as reported in issue GH15370
empty_frame = DataFrame(data=[], index=[], columns=['A'])
empty_frame_copy = deepcopy(empty_frame)
self._compare(empty_frame_copy, empty_frame)