Skip to content

Latest commit

 

History

History
629 lines (499 loc) · 23.8 KB

dataset_prepare.md

File metadata and controls

629 lines (499 loc) · 23.8 KB

Prepare datasets

It is recommended to symlink the dataset root to $MMSEGMENTATION/data. If your folder structure is different, you may need to change the corresponding paths in config files.

mmsegmentation
├── mmseg
├── tools
├── configs
├── data
│   ├── cityscapes
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── VOCdevkit
│   │   ├── VOC2012
│   │   │   ├── JPEGImages
│   │   │   ├── SegmentationClass
│   │   │   ├── ImageSets
│   │   │   │   ├── Segmentation
│   │   ├── VOC2010
│   │   │   ├── JPEGImages
│   │   │   ├── SegmentationClassContext
│   │   │   ├── ImageSets
│   │   │   │   ├── SegmentationContext
│   │   │   │   │   ├── train.txt
│   │   │   │   │   ├── val.txt
│   │   │   ├── trainval_merged.json
│   │   ├── VOCaug
│   │   │   ├── dataset
│   │   │   │   ├── cls
│   ├── ade
│   │   ├── ADEChallengeData2016
│   │   │   ├── annotations
│   │   │   │   ├── training
│   │   │   │   ├── validation
│   │   │   ├── images
│   │   │   │   ├── training
│   │   │   │   ├── validation
│   ├── coco_stuff10k
│   │   ├── images
│   │   │   ├── train2014
│   │   │   ├── test2014
│   │   ├── annotations
│   │   │   ├── train2014
│   │   │   ├── test2014
│   │   ├── imagesLists
│   │   │   ├── train.txt
│   │   │   ├── test.txt
│   │   │   ├── all.txt
│   ├── coco_stuff164k
│   │   ├── images
│   │   │   ├── train2017
│   │   │   ├── val2017
│   │   ├── annotations
│   │   │   ├── train2017
│   │   │   ├── val2017
│   ├── CHASE_DB1
│   │   ├── images
│   │   │   ├── training
│   │   │   ├── validation
│   │   ├── annotations
│   │   │   ├── training
│   │   │   ├── validation
│   ├── DRIVE
│   │   ├── images
│   │   │   ├── training
│   │   │   ├── validation
│   │   ├── annotations
│   │   │   ├── training
│   │   │   ├── validation
│   ├── HRF
│   │   ├── images
│   │   │   ├── training
│   │   │   ├── validation
│   │   ├── annotations
│   │   │   ├── training
│   │   │   ├── validation
│   ├── STARE
│   │   ├── images
│   │   │   ├── training
│   │   │   ├── validation
│   │   ├── annotations
│   │   │   ├── training
│   │   │   ├── validation
|   ├── dark_zurich
|   │   ├── gps
|   │   │   ├── val
|   │   │   └── val_ref
|   │   ├── gt
|   │   │   └── val
|   │   ├── LICENSE.txt
|   │   ├── lists_file_names
|   │   │   ├── val_filenames.txt
|   │   │   └── val_ref_filenames.txt
|   │   ├── README.md
|   │   └── rgb_anon
|   │   |   ├── val
|   │   |   └── val_ref
|   ├── NighttimeDrivingTest
|   |   ├── gtCoarse_daytime_trainvaltest
|   |   │   └── test
|   |   │       └── night
|   |   └── leftImg8bit
|   |   |   └── test
|   |   |       └── night
│   ├── loveDA
│   │   ├── img_dir
│   │   │   ├── train
│   │   │   ├── val
│   │   │   ├── test
│   │   ├── ann_dir
│   │   │   ├── train
│   │   │   ├── val
│   ├── potsdam
│   │   ├── img_dir
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── ann_dir
│   │   │   ├── train
│   │   │   ├── val
│   ├── vaihingen
│   │   ├── img_dir
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── ann_dir
│   │   │   ├── train
│   │   │   ├── val
│   ├── iSAID
│   │   ├── img_dir
│   │   │   ├── train
│   │   │   ├── val
│   │   │   ├── test
│   │   ├── ann_dir
│   │   │   ├── train
│   │   │   ├── val
│   ├── occlusion-aware-face-dataset
│   │   ├── train.txt
│   │   ├── NatOcc_hand_sot
│   │   │   ├── img
│   │   │   ├── mask
│   │   ├── NatOcc_object
│   │   │   ├── img
│   │   │   ├── mask
│   │   ├── RandOcc
│   │   │   ├── img
│   │   │   ├── mask
│   │   ├── RealOcc
│   │   │   ├── img
│   │   │   ├── mask
│   │   │   ├── split
│   ├── ImageNetS
│   │   ├── ImageNetS919
│   │   │   ├── train-semi
│   │   │   ├── train-semi-segmentation
│   │   │   ├── validation
│   │   │   ├── validation-segmentation
│   │   │   ├── test
│   │   ├── ImageNetS300
│   │   │   ├── train-semi
│   │   │   ├── train-semi-segmentation
│   │   │   ├── validation
│   │   │   ├── validation-segmentation
│   │   │   ├── test
│   │   ├── ImageNetS50
│   │   │   ├── train-semi
│   │   │   ├── train-semi-segmentation
│   │   │   ├── validation
│   │   │   ├── validation-segmentation
│   │   │   ├── test

Cityscapes

The data could be found here after registration.

By convention, **labelTrainIds.png are used for cityscapes training. We provided a scripts based on cityscapesscripts to generate **labelTrainIds.png.

# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8

Pascal VOC

Pascal VOC 2012 could be downloaded from here. Beside, most recent works on Pascal VOC dataset usually exploit extra augmentation data, which could be found here.

If you would like to use augmented VOC dataset, please run following command to convert augmentation annotations into proper format.

# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug --nproc 8

Please refer to concat dataset for details about how to concatenate them and train them together.

ADE20K

The training and validation set of ADE20K could be download from this link. We may also download test set from here.

Pascal Context

The training and validation set of Pascal Context could be download from here. You may also download test set from here after registration.

To split the training and validation set from original dataset, you may download trainval_merged.json from here.

If you would like to use Pascal Context dataset, please install Detail and then run the following command to convert annotations into proper format.

python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json

COCO Stuff 10k

The data could be downloaded here by wget.

For COCO Stuff 10k dataset, please run the following commands to download and convert the dataset.

# download
mkdir coco_stuff10k && cd coco_stuff10k
wget http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.zip

# unzip
unzip cocostuff-10k-v1.1.zip

# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/coco_stuff10k.py /path/to/coco_stuff10k --nproc 8

By convention, mask labels in /path/to/coco_stuff164k/annotations/*2014/*_labelTrainIds.png are used for COCO Stuff 10k training and testing.

COCO Stuff 164k

For COCO Stuff 164k dataset, please run the following commands to download and convert the augmented dataset.

# download
mkdir coco_stuff164k && cd coco_stuff164k
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip

# unzip
unzip train2017.zip -d images/
unzip val2017.zip -d images/
unzip stuffthingmaps_trainval2017.zip -d annotations/

# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/coco_stuff164k.py /path/to/coco_stuff164k --nproc 8

By convention, mask labels in /path/to/coco_stuff164k/annotations/*2017/*_labelTrainIds.png are used for COCO Stuff 164k training and testing.

The details of this dataset could be found at here.

CHASE DB1

The training and validation set of CHASE DB1 could be download from here.

To convert CHASE DB1 dataset to MMSegmentation format, you should run the following command:

python tools/convert_datasets/chase_db1.py /path/to/CHASEDB1.zip

The script will make directory structure automatically.

DRIVE

The training and validation set of DRIVE could be download from here. Before that, you should register an account. Currently '1st_manual' is not provided officially.

To convert DRIVE dataset to MMSegmentation format, you should run the following command:

python tools/convert_datasets/drive.py /path/to/training.zip /path/to/test.zip

The script will make directory structure automatically.

HRF

First, download healthy.zip, glaucoma.zip, diabetic_retinopathy.zip, healthy_manualsegm.zip, glaucoma_manualsegm.zip and diabetic_retinopathy_manualsegm.zip.

To convert HRF dataset to MMSegmentation format, you should run the following command:

python tools/convert_datasets/hrf.py /path/to/healthy.zip /path/to/healthy_manualsegm.zip /path/to/glaucoma.zip /path/to/glaucoma_manualsegm.zip /path/to/diabetic_retinopathy.zip /path/to/diabetic_retinopathy_manualsegm.zip

The script will make directory structure automatically.

STARE

First, download stare-images.tar, labels-ah.tar and labels-vk.tar.

To convert STARE dataset to MMSegmentation format, you should run the following command:

python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels-ah.tar /path/to/labels-vk.tar

The script will make directory structure automatically.

Dark Zurich

Since we only support test models on this dataset, you may only download the validation set.

Nighttime Driving

Since we only support test models on this dataset, you may only download the test set.

LoveDA

The data could be downloaded from Google Drive here.

Or it can be downloaded from zenodo, you should run the following command:

# Download Train.zip
wget https://zenodo.org/record/5706578/files/Train.zip
# Download Val.zip
wget https://zenodo.org/record/5706578/files/Val.zip
# Download Test.zip
wget https://zenodo.org/record/5706578/files/Test.zip

For LoveDA dataset, please run the following command to download and re-organize the dataset.

python tools/convert_datasets/loveda.py /path/to/loveDA

Using trained model to predict test set of LoveDA and submit it to server can be found here.

More details about LoveDA can be found here.

ISPRS Potsdam

The Potsdam dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Potsdam.

The dataset can be requested at the challenge homepage. The '2_Ortho_RGB.zip' and '5_Labels_all_noBoundary.zip' are required.

For Potsdam dataset, please run the following command to download and re-organize the dataset.

python tools/convert_datasets/potsdam.py /path/to/potsdam

In our default setting, it will generate 3456 images for training and 2016 images for validation.

ISPRS Vaihingen

The Vaihingen dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Vaihingen.

The dataset can be requested at the challenge homepage. The 'ISPRS_semantic_labeling_Vaihingen.zip' and 'ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip' are required.

For Vaihingen dataset, please run the following command to download and re-organize the dataset.

python tools/convert_datasets/vaihingen.py /path/to/vaihingen

In our default setting (clip_size =512, stride_size=256), it will generate 344 images for training and 398 images for validation.

iSAID

The data images could be download from DOTA-v1.0 (train/val/test)

The data annotations could be download from iSAID (train/val)

The dataset is a Large-scale Dataset for Instance Segmentation (also have segmantic segmentation) in Aerial Images.

You may need to follow the following structure for dataset preparation after downloading iSAID dataset.

│   ├── iSAID
│   │   ├── train
│   │   │   ├── images
│   │   │   │   ├── part1.zip
│   │   │   │   ├── part2.zip
│   │   │   │   ├── part3.zip
│   │   │   ├── Semantic_masks
│   │   │   │   ├── images.zip
│   │   ├── val
│   │   │   ├── images
│   │   │   │   ├── part1.zip
│   │   │   ├── Semantic_masks
│   │   │   │   ├── images.zip
│   │   ├── test
│   │   │   ├── images
│   │   │   │   ├── part1.zip
│   │   │   │   ├── part2.zip
python tools/convert_datasets/isaid.py /path/to/iSAID

In our default setting (patch_width=896, patch_height=896, overlap_area=384), it will generate 33978 images for training and 11644 images for validation.

Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets

The dataset is generated by two techniques, Naturalistic occlusion generation, Random occlusion generation. you must install face-occlusion-generation and dataset. see more guide in https://github.com/kennyvoo/face-occlusion-generation.git

Dataset Preparation

step 1

Create a folder for data generation materials on mmsegmentation folder.

mkdir data_materials

step 2

Please download the masks (11k-hands_mask.7z,CelebAMask-HQ-masks_corrected.7z) from this drive

Please download the images from CelebAMask-HQ, 11k Hands.zip and dtd-r1.0.1.tar.gz.

step 3

Download a upsampled COCO objects images and masks (coco_object.7z). files can be found in this drive.

Download CelebAMask-HQ and 11k Hands images split txt files. (11k_hands_sample.txt, CelebAMask-HQ-WO-train.txt) found in drive.

download file to ./data_materials

CelebAMask-HQ.zip
CelebAMask-HQ-masks_corrected.7z
CelebAMask-HQ-WO-train.txt
RealOcc.7z
RealOcc-Wild.7z
11k-hands_mask.7z
11k Hands.zip
11k_hands_sample.txt
coco_object.7z
dtd-r1.0.1.tar.gz

apt-get install p7zip-full

cd data_materials

#make occlusion-aware-face-dataset folder
mkdir path-to-mmsegmentaion/data/occlusion-aware-face-dataset

#extract celebAMask-HQ and split by train-set
unzip CelebAMask-HQ.zip
7za x CelebAMask-HQ-masks_corrected.7z -o./CelebAMask-HQ
#copy training data to train-image-folder
rsync -a ./CelebAMask-HQ/CelebA-HQ-img/ --files-from=./CelebAMask-HQ-WO-train.txt ./CelebAMask-HQ-WO-Train_img
#create a file-name txt file for copying mask
basename -s .jpg ./CelebAMask-HQ-WO-Train_img/* > train.txt
#add .png to file-name txt file
xargs -n 1 -i echo {}.png < train.txt > mask_train.txt
#copy training data to train-mask-folder
rsync -a ./CelebAMask-HQ/CelebAMask-HQ-masks_corrected/ --files-from=./mask_train.txt ./CelebAMask-HQ-WO-Train_mask
mv train.txt ../data/occlusion-aware-face-dataset

#extract DTD
tar -zxvf dtd-r1.0.1.tar.gz
mv dtd DTD

#extract hands dataset and split by 200 samples
7za x 11k-hands_masks.7z -o.
unzip Hands.zip
rsync -a ./Hands/ --files-from=./11k_hands_sample.txt ./11k-hands_img

#extract upscaled coco object
7za x coco_object.7z -o.
mv coco_object/* .

#extract validation set
7za x RealOcc.7z -o../data/occlusion-aware-face-dataset

Dataset material Organization:


├── data_materials
│   ├── CelebAMask-HQ-WO-Train_img
│   │   ├── {image}.jpg
│   ├── CelebAMask-HQ-WO-Train_mask
│   │   ├── {mask}.png
│   ├── DTD
│   │   ├── images
│   │   │   ├── {classA}
│   │   │   │   ├── {image}.jpg
│   │   │   ├── {classB}
│   │   │   │   ├── {image}.jpg
│   ├── 11k-hands_img
│   │   ├── {image}.jpg
│   ├── 11k-hands_mask
│   │   ├── {mask}.png
│   ├── object_image_sr
│   │   ├── {image}.jpg
│   ├── object_mask_x4
│   │   ├── {mask}.png

Data Generation

git clone https://github.com/kennyvoo/face-occlusion-generation.git
cd face_occlusion-generation

Example script to generate NatOcc hand dataset

CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \
--config ./configs/natocc_hand.yaml \
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/NatOcc_hand_sot"\
AUGMENTATION.SOT True \
SOURCE_DATASET.IMG_DIR "path/to/data_materials/CelebAMask-HQ-WO-Train_img" \
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
OCCLUDER_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/11k-hands_img" \
OCCLUDER_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/11k-hands_masks"

Example script to generate NatOcc object dataset

CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \
--config ./configs/natocc_objects.yaml \
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/NatOcc_object" \
SOURCE_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_img" \
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
OCCLUDER_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/object_image_sr" \
OCCLUDER_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/object_mask_x4"

Example script to generate RandOcc dataset

CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4  python main.py \
--config ./configs/randocc.yaml \
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/RandOcc" \
SOURCE_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_img/" \
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
OCCLUDER_DATASET.IMG_DIR "path/to/jw93/mmsegmentation/data_materials/DTD/images"

Dataset Organization:

├── data
│   ├── occlusion-aware-face-dataset
│   │   ├── train.txt
│   │   ├── NatOcc_hand_sot
│   │   │   ├── img
│   │   │   │   ├── {image}.jpg
│   │   │   ├── mask
│   │   │   │   ├── {mask}.png
│   │   ├── NatOcc_object
│   │   │   ├── img
│   │   │   │   ├── {image}.jpg
│   │   │   ├── mask
│   │   │   │   ├── {mask}.png
│   │   ├── RandOcc
│   │   │   ├── img
│   │   │   │   ├── {image}.jpg
│   │   │   ├── mask
│   │   │   │   ├── {mask}.png
│   │   ├── RealOcc
│   │   │   ├── img
│   │   │   │   ├── {image}.jpg
│   │   │   ├── mask
│   │   │   │   ├── {mask}.png
│   │   │   ├── split
│   │   │   │   ├── val.txt

ImageNetS

The ImageNet-S dataset is for Large-scale unsupervised/semi-supervised semantic segmentation.

The images and annotations are available on ImageNet-S.

│   ├── ImageNetS
│   │   ├── ImageNetS919
│   │   │   ├── train-semi
│   │   │   ├── train-semi-segmentation
│   │   │   ├── validation
│   │   │   ├── validation-segmentation
│   │   │   ├── test
│   │   ├── ImageNetS300
│   │   │   ├── train-semi
│   │   │   ├── train-semi-segmentation
│   │   │   ├── validation
│   │   │   ├── validation-segmentation
│   │   │   ├── test
│   │   ├── ImageNetS50
│   │   │   ├── train-semi
│   │   │   ├── train-semi-segmentation
│   │   │   ├── validation
│   │   │   ├── validation-segmentation
│   │   │   ├── test