From c079acc26f93acc2eda08c7218c60559854f52f0 Mon Sep 17 00:00:00 2001 From: Tomasz Sobczyk Date: Fri, 13 May 2022 17:26:50 +0200 Subject: [PATCH] Update NNUE architecture to SFNNv5. Update network to nn-3c0aa92af1da.nnue. Architecture changes: Duplicated activation after the 1024->15 layer with squared crelu (so 15->15*2). As proposed by vondele. Trainer changes: Added bias to L1 factorization, which was previously missing (no measurable improvement but at least neutral in principle) For retraining linearly reduce lambda parameter from 1.0 at epoch 0 to 0.75 at epoch 800. reduce max_skipping_rate from 15 to 10 (compared to vondele's outstanding PR) Note: This network was trained with a ~0.8% error in quantization regarding the newly added activation function. This will be fixed in the released trainer version. Expect a trainer PR tomorrow. Note: The inference implementation cuts a corner to merge results from two activation functions. This could possibly be resolved nicer in the future. AVX2 implementation likely not necessary, but NEON is missing. First training session invocation: python3 train.py \ ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \ ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \ --gpus "$3," \ --threads 4 \ --num-workers 8 \ --batch-size 16384 \ --progress_bar_refresh_rate 20 \ --random-fen-skipping 3 \ --features=HalfKAv2_hm^ \ --lambda=1.0 \ --max_epochs=400 \ --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2 Second training session invocation: python3 train.py \ ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \ ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \ --gpus "$3," \ --threads 4 \ --num-workers 8 \ --batch-size 16384 \ --progress_bar_refresh_rate 20 \ --random-fen-skipping 3 \ --features=HalfKAv2_hm^ \ --start-lambda=1.0 \ --end-lambda=0.75 \ --gamma=0.995 \ --lr=4.375e-4 \ --max_epochs=800 \ --resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp367/nn-exp367-run3-epoch399.pt \ --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2 Passed STC: LLR: 2.95 (-2.94,2.94) <0.00,2.50> Total: 27288 W: 7445 L: 7178 D: 12665 Ptnml(0-2): 159, 3002, 7054, 3271, 158 https://tests.stockfishchess.org/tests/view/627e8c001919125939623644 Passed LTC: LLR: 2.95 (-2.94,2.94) <0.50,3.00> Total: 21792 W: 5969 L: 5727 D: 10096 Ptnml(0-2): 25, 2152, 6294, 2406, 19 https://tests.stockfishchess.org/tests/view/627f2a855734b18b2e2ece47 closes https://github.com/official-stockfish/Stockfish/pull/4020 Bench: 6481017 --- src/evaluate.h | 2 +- src/nnue/layers/sqr_clipped_relu.h | 120 +++++++++++++++++++++++++++++ src/nnue/nnue_architecture.h | 9 ++- 3 files changed, 128 insertions(+), 3 deletions(-) create mode 100644 src/nnue/layers/sqr_clipped_relu.h diff --git a/src/evaluate.h b/src/evaluate.h index e857b7992d8..f67961a90e5 100644 --- a/src/evaluate.h +++ b/src/evaluate.h @@ -39,7 +39,7 @@ namespace Eval { // The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue // for the build process (profile-build and fishtest) to work. Do not change the // name of the macro, as it is used in the Makefile. - #define EvalFileDefaultName "nn-d0b74ce1e5eb.nnue" + #define EvalFileDefaultName "nn-3c0aa92af1da.nnue" namespace NNUE { diff --git a/src/nnue/layers/sqr_clipped_relu.h b/src/nnue/layers/sqr_clipped_relu.h new file mode 100644 index 00000000000..b603a277fa2 --- /dev/null +++ b/src/nnue/layers/sqr_clipped_relu.h @@ -0,0 +1,120 @@ +/* + Stockfish, a UCI chess playing engine derived from Glaurung 2.1 + Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file) + + Stockfish is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Stockfish is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +// Definition of layer ClippedReLU of NNUE evaluation function + +#ifndef NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED +#define NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED + +#include "../nnue_common.h" + +namespace Stockfish::Eval::NNUE::Layers { + + // Clipped ReLU + template + class SqrClippedReLU { + public: + // Input/output type + using InputType = std::int32_t; + using OutputType = std::uint8_t; + + // Number of input/output dimensions + static constexpr IndexType InputDimensions = InDims; + static constexpr IndexType OutputDimensions = InputDimensions; + static constexpr IndexType PaddedOutputDimensions = + ceil_to_multiple(OutputDimensions, 32); + + using OutputBuffer = OutputType[PaddedOutputDimensions]; + + // Hash value embedded in the evaluation file + static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) { + std::uint32_t hashValue = 0x538D24C7u; + hashValue += prevHash; + return hashValue; + } + + // Read network parameters + bool read_parameters(std::istream&) { + return true; + } + + // Write network parameters + bool write_parameters(std::ostream&) const { + return true; + } + + // Forward propagation + const OutputType* propagate( + const InputType* input, OutputType* output) const { + + #if defined(USE_SSE2) + constexpr IndexType NumChunks = InputDimensions / 16; + + #ifdef USE_SSE41 + const __m128i Zero = _mm_setzero_si128(); + #else + const __m128i k0x80s = _mm_set1_epi8(-128); + #endif + + static_assert(WeightScaleBits == 6); + const auto in = reinterpret_cast(input); + const auto out = reinterpret_cast<__m128i*>(output); + for (IndexType i = 0; i < NumChunks; ++i) { + __m128i words0 = _mm_packs_epi32( + _mm_load_si128(&in[i * 4 + 0]), + _mm_load_si128(&in[i * 4 + 1])); + __m128i words1 = _mm_packs_epi32( + _mm_load_si128(&in[i * 4 + 2]), + _mm_load_si128(&in[i * 4 + 3])); + + // Not sure if + words0 = _mm_srli_epi16(_mm_mulhi_epi16(words0, words0), 3); + words1 = _mm_srli_epi16(_mm_mulhi_epi16(words1, words1), 3); + + const __m128i packedbytes = _mm_packs_epi16(words0, words1); + + _mm_store_si128(&out[i], + + #ifdef USE_SSE41 + _mm_max_epi8(packedbytes, Zero) + #else + _mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s) + #endif + + ); + } + constexpr IndexType Start = NumChunks * 16; + + #else + constexpr IndexType Start = 0; + #endif + + for (IndexType i = Start; i < InputDimensions; ++i) { + output[i] = static_cast( + // realy should be /127 but we need to make it fast + // needs to be accounted for in the trainer + std::max(0ll, std::min(127ll, (((long long)input[i] * input[i]) >> (2 * WeightScaleBits)) / 128))); + } + + return output; + } + }; + +} // namespace Stockfish::Eval::NNUE::Layers + +#endif // NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED diff --git a/src/nnue/nnue_architecture.h b/src/nnue/nnue_architecture.h index 4f9596ae949..cac8373075e 100644 --- a/src/nnue/nnue_architecture.h +++ b/src/nnue/nnue_architecture.h @@ -29,6 +29,7 @@ #include "layers/affine_transform.h" #include "layers/clipped_relu.h" +#include "layers/sqr_clipped_relu.h" #include "../misc.h" @@ -48,8 +49,9 @@ struct Network static constexpr int FC_1_OUTPUTS = 32; Layers::AffineTransform fc_0; + Layers::SqrClippedReLU ac_sqr_0; Layers::ClippedReLU ac_0; - Layers::AffineTransform fc_1; + Layers::AffineTransform fc_1; Layers::ClippedReLU ac_1; Layers::AffineTransform fc_2; @@ -93,6 +95,7 @@ struct Network struct alignas(CacheLineSize) Buffer { alignas(CacheLineSize) decltype(fc_0)::OutputBuffer fc_0_out; + alignas(CacheLineSize) decltype(ac_sqr_0)::OutputType ac_sqr_0_out[ceil_to_multiple(FC_0_OUTPUTS * 2, 32)]; alignas(CacheLineSize) decltype(ac_0)::OutputBuffer ac_0_out; alignas(CacheLineSize) decltype(fc_1)::OutputBuffer fc_1_out; alignas(CacheLineSize) decltype(ac_1)::OutputBuffer ac_1_out; @@ -114,8 +117,10 @@ struct Network #endif fc_0.propagate(transformedFeatures, buffer.fc_0_out); + ac_sqr_0.propagate(buffer.fc_0_out, buffer.ac_sqr_0_out); ac_0.propagate(buffer.fc_0_out, buffer.ac_0_out); - fc_1.propagate(buffer.ac_0_out, buffer.fc_1_out); + std::memcpy(buffer.ac_sqr_0_out + FC_0_OUTPUTS, buffer.ac_0_out, FC_0_OUTPUTS * sizeof(decltype(ac_0)::OutputType)); + fc_1.propagate(buffer.ac_sqr_0_out, buffer.fc_1_out); ac_1.propagate(buffer.fc_1_out, buffer.ac_1_out); fc_2.propagate(buffer.ac_1_out, buffer.fc_2_out);