-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy path00_image.py
80 lines (69 loc) · 2.78 KB
/
00_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
###############################################################################
### Simple demo with a single color image
### Input : Color image of face / hand / body
### Output: 2D/2.5D/3D display of face, hand, body keypoint/joint
### Usage : python 00_image.py -m face
### python 00_image.py -m hand
### python 00_image.py -m body
### python 00_image.py -m holistic
###############################################################################
import cv2
import sys
import argparse
from utils_display import DisplayFaceDetect, DisplayFace, DisplayHand, DisplayBody, DisplayHolistic
from utils_mediapipe import MediaPipeFaceDetect, MediaPipeFace, MediaPipeHand, MediaPipeBody, MediaPipeHolistic
# User select mode
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--mode', default='hand',
help='Select mode: face_detect / face / hand / body / holistic')
args = parser.parse_args()
mode = args.mode
# Load mediapipe and display class
if mode=='face_detect':
pipe = MediaPipeFaceDetect(model_selection=0, max_num_faces=5)
disp = DisplayFaceDetect()
file = '../data/sample/mona.png'
elif mode=='face':
pipe = MediaPipeFace(static_image_mode=True, max_num_faces=1, refine_landmarks=True)
disp = DisplayFace(draw3d=True, refine_landmarks=True)
file = '../data/sample/mona.png'
elif mode=='hand':
pipe = MediaPipeHand(static_image_mode=True, max_num_hands=1)
disp = DisplayHand(draw3d=True, max_num_hands=1)
file = '../data/sample/hand.png'
elif mode=='body':
pipe = MediaPipeBody(static_image_mode=True, model_complexity=1)
disp = DisplayBody(draw3d=True)
file = '../data/sample/upper_limb4.png'
elif mode=='holistic':
pipe = MediaPipeHolistic(static_image_mode=True, model_complexity=1, refine_face_landmarks=True)
disp = DisplayHolistic(draw3d=True, refine_face_landmarks=True)
file = '../data/sample/lower_limb4.png'
else:
print('Undefined mode only the following modes are available: \nface / hand / body / holistic')
sys.exit()
# Read in image (Note: You can change the file path to your own test image)
img = cv2.imread(file)
# # Preprocess image if necessary
# img = cv2.resize(img, None, fx=0.5, fy=0.5)
img = cv2.flip(img, 1)
# # Select ROI
# r = cv2.selectROI(img)
# # Crop image
# img = img[r[1]:r[1]+r[3], r[0]:r[0]+r[2]]
# Feedforward to extract pose param
param = pipe.forward(img)
# Display 2D keypoint
cv2.imshow('img 2D', disp.draw2d(img.copy(), param))
# Display 2.5D keypoint
if mode!='face_detect':
cv2.imshow('img 2.5D', disp.draw2d_(img.copy(), param))
cv2.waitKey(0) # Press escape to dispay 3D view
# Display 3D joint
if mode!='face_detect':
disp.draw3d(param)
disp.vis.update_geometry(None)
disp.vis.poll_events()
disp.vis.update_renderer()
disp.vis.run()
pipe.pipe.close()