-
Notifications
You must be signed in to change notification settings - Fork 30.2k
/
Copy pathtime.cc
930 lines (798 loc) Β· 30.4 KB
/
time.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/platform/time.h"
#if V8_OS_POSIX
#include <fcntl.h> // for O_RDONLY
#include <sys/time.h>
#include <unistd.h>
#endif
#if V8_OS_DARWIN
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <pthread.h>
#endif
#if V8_OS_FUCHSIA
#include <threads.h>
#include <zircon/syscalls.h>
#include <zircon/threads.h>
#endif
#if V8_OS_STARBOARD
#include <sys/time.h>
#endif // V8_OS_STARBOARD
#include <cstring>
#include <ostream>
#if V8_OS_WIN
#include <windows.h>
// This has to come after windows.h.
#include <mmsystem.h> // For timeGetTime().
#include <atomic>
#include "src/base/lazy-instance.h"
#include "src/base/win32-headers.h"
#endif
#include "src/base/cpu.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#if V8_OS_STARBOARD
#include "starboard/common/time.h"
#endif
namespace {
#if V8_OS_DARWIN
int64_t ComputeThreadTicks() {
mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT;
thread_basic_info_data_t thread_info_data;
kern_return_t kr = thread_info(
pthread_mach_thread_np(pthread_self()),
THREAD_BASIC_INFO,
reinterpret_cast<thread_info_t>(&thread_info_data),
&thread_info_count);
CHECK_EQ(kr, KERN_SUCCESS);
// We can add the seconds into a {int64_t} without overflow.
CHECK_LE(thread_info_data.user_time.seconds,
std::numeric_limits<int64_t>::max() -
thread_info_data.system_time.seconds);
int64_t seconds =
thread_info_data.user_time.seconds + thread_info_data.system_time.seconds;
// Multiplying the seconds by {kMicrosecondsPerSecond}, and adding something
// in [0, 2 * kMicrosecondsPerSecond) must result in a valid {int64_t}.
static constexpr int64_t kSecondsLimit =
(std::numeric_limits<int64_t>::max() /
v8::base::Time::kMicrosecondsPerSecond) -
2;
CHECK_GT(kSecondsLimit, seconds);
int64_t micros = seconds * v8::base::Time::kMicrosecondsPerSecond;
micros += (thread_info_data.user_time.microseconds +
thread_info_data.system_time.microseconds);
return micros;
}
#elif V8_OS_FUCHSIA
V8_INLINE int64_t GetFuchsiaThreadTicks() {
zx_info_thread_stats_t info;
zx_status_t status = zx_object_get_info(thrd_get_zx_handle(thrd_current()),
ZX_INFO_THREAD_STATS, &info,
sizeof(info), nullptr, nullptr);
CHECK_EQ(status, ZX_OK);
return info.total_runtime / v8::base::Time::kNanosecondsPerMicrosecond;
}
#elif V8_OS_POSIX
// Helper function to get results from clock_gettime() and convert to a
// microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported
// on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines
// _POSIX_MONOTONIC_CLOCK to -1.
V8_INLINE int64_t ClockNow(clockid_t clk_id) {
#if (defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \
defined(V8_OS_BSD) || defined(V8_OS_ANDROID) || defined(V8_OS_ZOS)
#if defined(V8_OS_AIX)
// On AIX clock_gettime for CLOCK_THREAD_CPUTIME_ID outputs time with
// resolution of 10ms. thread_cputime API provides the time in ns.
if (clk_id == CLOCK_THREAD_CPUTIME_ID) {
#if defined(__PASE__) // CLOCK_THREAD_CPUTIME_ID clock not supported on IBMi
return 0;
#else
thread_cputime_t tc;
if (thread_cputime(-1, &tc) != 0) {
UNREACHABLE();
}
return (tc.stime / v8::base::Time::kNanosecondsPerMicrosecond)
+ (tc.utime / v8::base::Time::kNanosecondsPerMicrosecond);
#endif // defined(__PASE__)
}
#endif // defined(V8_OS_AIX)
struct timespec ts;
if (clock_gettime(clk_id, &ts) != 0) {
UNREACHABLE();
}
// Multiplying the seconds by {kMicrosecondsPerSecond}, and adding something
// in [0, kMicrosecondsPerSecond) must result in a valid {int64_t}.
static constexpr int64_t kSecondsLimit =
(std::numeric_limits<int64_t>::max() /
v8::base::Time::kMicrosecondsPerSecond) -
1;
CHECK_GT(kSecondsLimit, ts.tv_sec);
int64_t result = int64_t{ts.tv_sec} * v8::base::Time::kMicrosecondsPerSecond;
result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond);
return result;
#else // Monotonic clock not supported.
return 0;
#endif
}
V8_INLINE int64_t NanosecondsNow() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return int64_t{ts.tv_sec} * v8::base::Time::kNanosecondsPerSecond +
ts.tv_nsec;
}
inline bool IsHighResolutionTimer(clockid_t clk_id) {
// Currently this is only needed for CLOCK_MONOTONIC. If other clocks need
// to be checked, care must be taken to support all platforms correctly;
// see ClockNow() above for precedent.
DCHECK_EQ(clk_id, CLOCK_MONOTONIC);
int64_t previous = NanosecondsNow();
// There should be enough attempts to make the loop run for more than one
// microsecond if the early return is not taken -- the elapsed time can't
// be measured in that situation, so we have to estimate it offline.
constexpr int kAttempts = 100;
for (int i = 0; i < kAttempts; i++) {
int64_t next = NanosecondsNow();
int64_t delta = next - previous;
if (delta == 0) continue;
// We expect most systems to take this branch on the first iteration.
if (delta <= v8::base::Time::kNanosecondsPerMicrosecond) {
return true;
}
previous = next;
}
// As of 2022, we expect that the loop above has taken at least 2 ΞΌs (on
// a fast desktop). If we still haven't seen a non-zero clock increment
// in sub-microsecond range, assume a low resolution timer.
return false;
}
#elif V8_OS_WIN
// Returns the current value of the performance counter.
V8_INLINE uint64_t QPCNowRaw() {
LARGE_INTEGER perf_counter_now = {};
// According to the MSDN documentation for QueryPerformanceCounter(), this
// will never fail on systems that run XP or later.
// https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx
BOOL result = ::QueryPerformanceCounter(&perf_counter_now);
DCHECK(result);
USE(result);
return perf_counter_now.QuadPart;
}
#endif // V8_OS_DARWIN
} // namespace
namespace v8 {
namespace base {
int TimeDelta::InDays() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}
int TimeDelta::InHours() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}
int TimeDelta::InMinutes() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}
double TimeDelta::InSecondsF() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}
int64_t TimeDelta::InSeconds() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ / Time::kMicrosecondsPerSecond;
}
double TimeDelta::InMillisecondsF() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMilliseconds() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMillisecondsRoundedUp() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMicroseconds() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_;
}
int64_t TimeDelta::InNanoseconds() const {
if (IsMax()) {
// Preserve max to prevent overflow.
return std::numeric_limits<int64_t>::max();
}
return delta_ * Time::kNanosecondsPerMicrosecond;
}
#if V8_OS_DARWIN
TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) {
DCHECK_GE(ts.tv_nsec, 0);
DCHECK_LT(ts.tv_nsec,
static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT
return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
}
struct mach_timespec TimeDelta::ToMachTimespec() const {
struct mach_timespec ts;
DCHECK_GE(delta_, 0);
ts.tv_sec = static_cast<unsigned>(delta_ / Time::kMicrosecondsPerSecond);
ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
Time::kNanosecondsPerMicrosecond;
return ts;
}
#endif // V8_OS_DARWIN
#if V8_OS_POSIX
TimeDelta TimeDelta::FromTimespec(struct timespec ts) {
DCHECK_GE(ts.tv_nsec, 0);
DCHECK_LT(ts.tv_nsec,
static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT
return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
}
struct timespec TimeDelta::ToTimespec() const {
struct timespec ts;
ts.tv_sec = static_cast<time_t>(delta_ / Time::kMicrosecondsPerSecond);
ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
Time::kNanosecondsPerMicrosecond;
return ts;
}
#endif // V8_OS_POSIX
#if V8_OS_WIN
// We implement time using the high-resolution timers so that we can get
// timeouts which are smaller than 10-15ms. To avoid any drift, we
// periodically resync the internal clock to the system clock.
class Clock final {
public:
Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {}
Time Now() {
// Time between resampling the un-granular clock for this API (1 minute).
const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1);
MutexGuard lock_guard(&mutex_);
// Determine current time and ticks.
TimeTicks ticks = GetSystemTicks();
Time time = GetSystemTime();
// Check if we need to synchronize with the system clock due to a backwards
// time change or the amount of time elapsed.
TimeDelta elapsed = ticks - initial_ticks_;
if (time < initial_time_ || elapsed > kMaxElapsedTime) {
initial_ticks_ = ticks;
initial_time_ = time;
return time;
}
return initial_time_ + elapsed;
}
Time NowFromSystemTime() {
MutexGuard lock_guard(&mutex_);
initial_ticks_ = GetSystemTicks();
initial_time_ = GetSystemTime();
return initial_time_;
}
private:
static TimeTicks GetSystemTicks() {
return TimeTicks::Now();
}
static Time GetSystemTime() {
FILETIME ft;
::GetSystemTimeAsFileTime(&ft);
return Time::FromFiletime(ft);
}
TimeTicks initial_ticks_;
Time initial_time_;
Mutex mutex_;
};
namespace {
DEFINE_LAZY_LEAKY_OBJECT_GETTER(Clock, GetClock)
} // namespace
Time Time::Now() { return GetClock()->Now(); }
Time Time::NowFromSystemTime() { return GetClock()->NowFromSystemTime(); }
// Time between windows epoch and standard epoch.
static const int64_t kTimeToEpochInMicroseconds = int64_t{11644473600000000};
Time Time::FromFiletime(FILETIME ft) {
if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
return Time();
}
if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
return Max();
}
int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
(static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10;
return Time(us - kTimeToEpochInMicroseconds);
}
FILETIME Time::ToFiletime() const {
DCHECK_GE(us_, 0);
FILETIME ft;
if (IsNull()) {
ft.dwLowDateTime = 0;
ft.dwHighDateTime = 0;
return ft;
}
if (IsMax()) {
ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
return ft;
}
uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
ft.dwLowDateTime = static_cast<DWORD>(us);
ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
return ft;
}
#elif V8_OS_POSIX || V8_OS_STARBOARD
Time Time::Now() {
struct timeval tv;
int result = gettimeofday(&tv, nullptr);
DCHECK_EQ(0, result);
USE(result);
return FromTimeval(tv);
}
Time Time::NowFromSystemTime() {
return Now();
}
Time Time::FromTimespec(struct timespec ts) {
DCHECK_GE(ts.tv_nsec, 0);
DCHECK_LT(ts.tv_nsec, kNanosecondsPerSecond);
if (ts.tv_nsec == 0 && ts.tv_sec == 0) {
return Time();
}
if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT
ts.tv_sec == std::numeric_limits<time_t>::max()) {
return Max();
}
return Time(ts.tv_sec * kMicrosecondsPerSecond +
ts.tv_nsec / kNanosecondsPerMicrosecond);
}
struct timespec Time::ToTimespec() const {
struct timespec ts;
if (IsNull()) {
ts.tv_sec = 0;
ts.tv_nsec = 0;
return ts;
}
if (IsMax()) {
ts.tv_sec = std::numeric_limits<time_t>::max();
ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT
return ts;
}
ts.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond);
ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond;
return ts;
}
Time Time::FromTimeval(struct timeval tv) {
DCHECK_GE(tv.tv_usec, 0);
DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
if (tv.tv_usec == 0 && tv.tv_sec == 0) {
return Time();
}
if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
tv.tv_sec == std::numeric_limits<time_t>::max()) {
return Max();
}
return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
}
struct timeval Time::ToTimeval() const {
struct timeval tv;
if (IsNull()) {
tv.tv_sec = 0;
tv.tv_usec = 0;
return tv;
}
if (IsMax()) {
tv.tv_sec = std::numeric_limits<time_t>::max();
tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
return tv;
}
tv.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond);
tv.tv_usec = us_ % kMicrosecondsPerSecond;
return tv;
}
#endif // V8_OS_POSIX || V8_OS_STARBOARD
Time Time::FromJsTime(double ms_since_epoch) {
// The epoch is a valid time, so this constructor doesn't interpret
// 0 as the null time.
if (ms_since_epoch == std::numeric_limits<double>::max()) {
return Max();
}
return Time(
static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
}
double Time::ToJsTime() const {
if (IsNull()) {
// Preserve 0 so the invalid result doesn't depend on the platform.
return 0;
}
if (IsMax()) {
// Preserve max without offset to prevent overflow.
return std::numeric_limits<double>::max();
}
return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
}
std::ostream& operator<<(std::ostream& os, const Time& time) {
return os << time.ToJsTime();
}
#if V8_OS_WIN
namespace {
// We define a wrapper to adapt between the __stdcall and __cdecl call of the
// mock function, and to avoid a static constructor. Assigning an import to a
// function pointer directly would require setup code to fetch from the IAT.
DWORD timeGetTimeWrapper() { return timeGetTime(); }
DWORD (*g_tick_function)(void) = &timeGetTimeWrapper;
// A structure holding the most significant bits of "last seen" and a
// "rollover" counter.
union LastTimeAndRolloversState {
// The state as a single 32-bit opaque value.
int32_t as_opaque_32;
// The state as usable values.
struct {
// The top 8-bits of the "last" time. This is enough to check for rollovers
// and the small bit-size means fewer CompareAndSwap operations to store
// changes in state, which in turn makes for fewer retries.
uint8_t last_8;
// A count of the number of detected rollovers. Using this as bits 47-32
// of the upper half of a 64-bit value results in a 48-bit tick counter.
// This extends the total rollover period from about 49 days to about 8800
// years while still allowing it to be stored with last_8 in a single
// 32-bit value.
uint16_t rollovers;
} as_values;
};
std::atomic<int32_t> g_last_time_and_rollovers{0};
static_assert(sizeof(LastTimeAndRolloversState) <=
sizeof(g_last_time_and_rollovers),
"LastTimeAndRolloversState does not fit in a single atomic word");
// We use timeGetTime() to implement TimeTicks::Now(). This can be problematic
// because it returns the number of milliseconds since Windows has started,
// which will roll over the 32-bit value every ~49 days. We try to track
// rollover ourselves, which works if TimeTicks::Now() is called at least every
// 48.8 days (not 49 days because only changes in the top 8 bits get noticed).
TimeTicks RolloverProtectedNow() {
LastTimeAndRolloversState state;
DWORD now; // DWORD is always unsigned 32 bits.
// Fetch the "now" and "last" tick values, updating "last" with "now" and
// incrementing the "rollovers" counter if the tick-value has wrapped back
// around. Atomic operations ensure that both "last" and "rollovers" are
// always updated together.
int32_t original = g_last_time_and_rollovers.load(std::memory_order_acquire);
while (true) {
state.as_opaque_32 = original;
now = g_tick_function();
uint8_t now_8 = static_cast<uint8_t>(now >> 24);
if (now_8 < state.as_values.last_8) ++state.as_values.rollovers;
state.as_values.last_8 = now_8;
// If the state hasn't changed, exit the loop.
if (state.as_opaque_32 == original) break;
// Save the changed state. If the existing value is unchanged from the
// original, exit the loop.
if (g_last_time_and_rollovers.compare_exchange_weak(
original, state.as_opaque_32, std::memory_order_acq_rel)) {
break;
}
// Another thread has done something in between so retry from the top.
// {original} has been updated by the {compare_exchange_weak}.
}
return TimeTicks() +
TimeDelta::FromMilliseconds(
now + (static_cast<uint64_t>(state.as_values.rollovers) << 32));
}
// Discussion of tick counter options on Windows:
//
// (1) CPU cycle counter. (Retrieved via RDTSC)
// The CPU counter provides the highest resolution time stamp and is the least
// expensive to retrieve. However, on older CPUs, two issues can affect its
// reliability: First it is maintained per processor and not synchronized
// between processors. Also, the counters will change frequency due to thermal
// and power changes, and stop in some states.
//
// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
// resolution (<1 microsecond) time stamp. On most hardware running today, it
// auto-detects and uses the constant-rate RDTSC counter to provide extremely
// efficient and reliable time stamps.
//
// On older CPUs where RDTSC is unreliable, it falls back to using more
// expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI
// PM timer, and can involve system calls; and all this is up to the HAL (with
// some help from ACPI). According to
// http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the
// worst case, it gets the counter from the rollover interrupt on the
// programmable interrupt timer. In best cases, the HAL may conclude that the
// RDTSC counter runs at a constant frequency, then it uses that instead. On
// multiprocessor machines, it will try to verify the values returned from
// RDTSC on each processor are consistent with each other, and apply a handful
// of workarounds for known buggy hardware. In other words, QPC is supposed to
// give consistent results on a multiprocessor computer, but for older CPUs it
// can be unreliable due bugs in BIOS or HAL.
//
// (3) System time. The system time provides a low-resolution (from ~1 to ~15.6
// milliseconds) time stamp but is comparatively less expensive to retrieve and
// more reliable. Time::EnableHighResolutionTimer() and
// Time::ActivateHighResolutionTimer() can be called to alter the resolution of
// this timer; and also other Windows applications can alter it, affecting this
// one.
TimeTicks InitialTimeTicksNowFunction();
// See "threading notes" in InitializeNowFunctionPointer() for details on how
// concurrent reads/writes to these globals has been made safe.
using TimeTicksNowFunction = decltype(&TimeTicks::Now);
TimeTicksNowFunction g_time_ticks_now_function = &InitialTimeTicksNowFunction;
int64_t g_qpc_ticks_per_second = 0;
TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) {
// Ensure that the assignment to |g_qpc_ticks_per_second|, made in
// InitializeNowFunctionPointer(), has happened by this point.
std::atomic_thread_fence(std::memory_order_acquire);
DCHECK_GT(g_qpc_ticks_per_second, 0);
// If the QPC Value is below the overflow threshold, we proceed with
// simple multiply and divide.
if (qpc_value < TimeTicks::kQPCOverflowThreshold) {
return TimeDelta::FromMicroseconds(
qpc_value * TimeTicks::kMicrosecondsPerSecond / g_qpc_ticks_per_second);
}
// Otherwise, calculate microseconds in a round about manner to avoid
// overflow and precision issues.
int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second;
int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second);
return TimeDelta::FromMicroseconds(
(whole_seconds * TimeTicks::kMicrosecondsPerSecond) +
((leftover_ticks * TimeTicks::kMicrosecondsPerSecond) /
g_qpc_ticks_per_second));
}
TimeTicks QPCNow() { return TimeTicks() + QPCValueToTimeDelta(QPCNowRaw()); }
void InitializeTimeTicksNowFunctionPointer() {
LARGE_INTEGER ticks_per_sec = {};
if (!QueryPerformanceFrequency(&ticks_per_sec)) ticks_per_sec.QuadPart = 0;
// If Windows cannot provide a QPC implementation, TimeTicks::Now() must use
// the low-resolution clock.
//
// If the QPC implementation is expensive and/or unreliable, TimeTicks::Now()
// will still use the low-resolution clock. A CPU lacking a non-stop time
// counter will cause Windows to provide an alternate QPC implementation that
// works, but is expensive to use. Certain Athlon CPUs are known to make the
// QPC implementation unreliable.
//
// Otherwise, Now uses the high-resolution QPC clock. As of 21 August 2015,
// ~72% of users fall within this category.
TimeTicksNowFunction now_function;
CPU cpu;
if (ticks_per_sec.QuadPart <= 0 || !cpu.has_non_stop_time_stamp_counter()) {
now_function = &RolloverProtectedNow;
} else {
now_function = &QPCNow;
}
// Threading note 1: In an unlikely race condition, it's possible for two or
// more threads to enter InitializeNowFunctionPointer() in parallel. This is
// not a problem since all threads should end up writing out the same values
// to the global variables.
//
// Threading note 2: A release fence is placed here to ensure, from the
// perspective of other threads using the function pointers, that the
// assignment to |g_qpc_ticks_per_second| happens before the function pointers
// are changed.
g_qpc_ticks_per_second = ticks_per_sec.QuadPart;
std::atomic_thread_fence(std::memory_order_release);
g_time_ticks_now_function = now_function;
}
TimeTicks InitialTimeTicksNowFunction() {
InitializeTimeTicksNowFunctionPointer();
return g_time_ticks_now_function();
}
#if V8_HOST_ARCH_ARM64
// From MSDN, FILETIME "Contains a 64-bit value representing the number of
// 100-nanosecond intervals since January 1, 1601 (UTC)."
int64_t FileTimeToMicroseconds(const FILETIME& ft) {
// Need to bit_cast to fix alignment, then divide by 10 to convert
// 100-nanoseconds to microseconds. This only works on little-endian
// machines.
return bit_cast<int64_t, FILETIME>(ft) / 10;
}
#endif
} // namespace
// static
TimeTicks TimeTicks::Now() {
// Make sure we never return 0 here.
TimeTicks ticks(g_time_ticks_now_function());
DCHECK(!ticks.IsNull());
return ticks;
}
// static
bool TimeTicks::IsHighResolution() {
if (g_time_ticks_now_function == &InitialTimeTicksNowFunction)
InitializeTimeTicksNowFunctionPointer();
return g_time_ticks_now_function == &QPCNow;
}
#else // V8_OS_WIN
TimeTicks TimeTicks::Now() {
int64_t ticks;
#if V8_OS_DARWIN
static struct mach_timebase_info info;
if (info.denom == 0) {
kern_return_t result = mach_timebase_info(&info);
DCHECK_EQ(KERN_SUCCESS, result);
USE(result);
}
ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
info.numer / info.denom);
#elif V8_OS_SOLARIS
ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
#elif V8_OS_FUCHSIA
ticks = zx_clock_get_monotonic() / Time::kNanosecondsPerMicrosecond;
#elif V8_OS_POSIX
ticks = ClockNow(CLOCK_MONOTONIC);
#elif V8_OS_STARBOARD
ticks = starboard::CurrentMonotonicTime();
#else
#error platform does not implement TimeTicks::Now.
#endif // V8_OS_DARWIN
// Make sure we never return 0 here.
return TimeTicks(ticks + 1);
}
// static
bool TimeTicks::IsHighResolution() {
#if V8_OS_DARWIN
return true;
#elif V8_OS_FUCHSIA
return true;
#elif V8_OS_POSIX
static const bool is_high_resolution = IsHighResolutionTimer(CLOCK_MONOTONIC);
return is_high_resolution;
#else
return true;
#endif
}
#endif // V8_OS_WIN
bool ThreadTicks::IsSupported() {
#if V8_OS_STARBOARD
return starboard::CurrentMonotonicThreadTime() != 0;
#elif defined(__PASE__)
// Thread CPU time accounting is unavailable in PASE
return false;
#elif (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
defined(V8_OS_DARWIN) || defined(V8_OS_ANDROID) || \
defined(V8_OS_SOLARIS) || defined(V8_OS_ZOS)
return true;
#elif defined(V8_OS_WIN)
return IsSupportedWin();
#else
return false;
#endif
}
ThreadTicks ThreadTicks::Now() {
#if V8_OS_STARBOARD
const int64_t now = starboard::CurrentMonotonicThreadTime();
if (now != 0)
return ThreadTicks(now);
UNREACHABLE();
#elif V8_OS_DARWIN
return ThreadTicks(ComputeThreadTicks());
#elif V8_OS_FUCHSIA
return ThreadTicks(GetFuchsiaThreadTicks());
#elif (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
defined(V8_OS_ANDROID) || defined(V8_OS_ZOS)
return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID));
#elif V8_OS_SOLARIS
return ThreadTicks(gethrvtime() / Time::kNanosecondsPerMicrosecond);
#elif V8_OS_WIN
return ThreadTicks::GetForThread(::GetCurrentThread());
#else
UNREACHABLE();
#endif
}
#if V8_OS_WIN
ThreadTicks ThreadTicks::GetForThread(const HANDLE& thread_handle) {
DCHECK(IsSupported());
#if V8_HOST_ARCH_ARM64
// QueryThreadCycleTime versus TSCTicksPerSecond doesn't have much relation to
// actual elapsed time on Windows on Arm, because QueryThreadCycleTime is
// backed by the actual number of CPU cycles executed, rather than a
// constant-rate timer like Intel. To work around this, use GetThreadTimes
// (which isn't as accurate but is meaningful as a measure of elapsed
// per-thread time).
FILETIME creation_time, exit_time, kernel_time, user_time;
::GetThreadTimes(thread_handle, &creation_time, &exit_time, &kernel_time,
&user_time);
int64_t us = FileTimeToMicroseconds(user_time);
return ThreadTicks(us);
#else
// Get the number of TSC ticks used by the current thread.
ULONG64 thread_cycle_time = 0;
::QueryThreadCycleTime(thread_handle, &thread_cycle_time);
// Get the frequency of the TSC.
double tsc_ticks_per_second = TSCTicksPerSecond();
if (tsc_ticks_per_second == 0)
return ThreadTicks();
// Return the CPU time of the current thread.
double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second;
return ThreadTicks(
static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond));
#endif
}
// static
bool ThreadTicks::IsSupportedWin() {
static bool is_supported = base::CPU().has_non_stop_time_stamp_counter();
return is_supported;
}
// static
void ThreadTicks::WaitUntilInitializedWin() {
#ifndef V8_HOST_ARCH_ARM64
while (TSCTicksPerSecond() == 0) ::Sleep(10);
#endif
}
#ifndef V8_HOST_ARCH_ARM64
double ThreadTicks::TSCTicksPerSecond() {
DCHECK(IsSupported());
// The value returned by QueryPerformanceFrequency() cannot be used as the TSC
// frequency, because there is no guarantee that the TSC frequency is equal to
// the performance counter frequency.
// The TSC frequency is cached in a static variable because it takes some time
// to compute it.
static double tsc_ticks_per_second = 0;
if (tsc_ticks_per_second != 0)
return tsc_ticks_per_second;
// Increase the thread priority to reduces the chances of having a context
// switch during a reading of the TSC and the performance counter.
int previous_priority = ::GetThreadPriority(::GetCurrentThread());
::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
// The first time that this function is called, make an initial reading of the
// TSC and the performance counter.
static const uint64_t tsc_initial = __rdtsc();
static const uint64_t perf_counter_initial = QPCNowRaw();
// Make a another reading of the TSC and the performance counter every time
// that this function is called.
uint64_t tsc_now = __rdtsc();
uint64_t perf_counter_now = QPCNowRaw();
// Reset the thread priority.
::SetThreadPriority(::GetCurrentThread(), previous_priority);
// Make sure that at least 50 ms elapsed between the 2 readings. The first
// time that this function is called, we don't expect this to be the case.
// Note: The longer the elapsed time between the 2 readings is, the more
// accurate the computed TSC frequency will be. The 50 ms value was
// chosen because local benchmarks show that it allows us to get a
// stddev of less than 1 tick/us between multiple runs.
// Note: According to the MSDN documentation for QueryPerformanceFrequency(),
// this will never fail on systems that run XP or later.
// https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx
LARGE_INTEGER perf_counter_frequency = {};
::QueryPerformanceFrequency(&perf_counter_frequency);
DCHECK_GE(perf_counter_now, perf_counter_initial);
uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial;
double elapsed_time_seconds =
perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart);
const double kMinimumEvaluationPeriodSeconds = 0.05;
if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds)
return 0;
// Compute the frequency of the TSC.
DCHECK_GE(tsc_now, tsc_initial);
uint64_t tsc_ticks = tsc_now - tsc_initial;
tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds;
return tsc_ticks_per_second;
}
#endif // !defined(V8_HOST_ARCH_ARM64)
#endif // V8_OS_WIN
} // namespace base
} // namespace v8