forked from nhsengland/AIF_Allocation_Tool
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdashboard.py
699 lines (599 loc) · 24.6 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# -------------------------------------------------------------------------
# Copyright (c) 2021 NHS England and NHS Improvement. All rights reserved.
# Licensed under the MIT License and the Open Government License v3. See
# license.txt in the project root for license information.
# -------------------------------------------------------------------------
"""
FILE: dashboard.py
DESCRIPTION: Streamlit weighted capitation tool
CONTRIBUTORS: Craig Shenton, Jonathan Pearson, Mattia Ficarelli
CONTACT: [email protected]
CREATED: 2021-12-14
VERSION: 0.0.1
"""
# Libraries
# -------------------------------------------------------------------------
# python
import json
import time
import base64
import io
import zipfile
import regex as re
from datetime import datetime
import os
# local
import utils
# 3rd party:
import streamlit as st
import pandas as pd
from streamlit_folium import folium_static
import folium
st.set_page_config(
page_title="ICB Place Based Allocation Tool",
page_icon="https://www.england.nhs.uk/wp-content/themes/nhsengland/static/img/favicon.ico",
layout="centered",
initial_sidebar_state="expanded",
menu_items={
"Get Help": "https://www.england.nhs.uk/allocations/",
"Report a bug": "https://github.com/nhsengland/AIF_Allocation_Tool",
"About": "This tool is designed to support allocation at places by allowing places to be defined by aggregating GP Practices within an ICB. Please refer to the User Guide for instructions. For more information on the latest allocations, including contact details, please refer to: [https://www.england.nhs.uk/allocations/](https://www.england.nhs.uk/allocations/)",
},
)
padding = 1
st.markdown(
f""" <style>
.reportview-container .main .block-container{{
padding-top: {padding}rem;
}} </style> """,
unsafe_allow_html=True,
)
# Set default place in session
# -------------------------------------------------------------------------
if len(st.session_state) < 1:
st.session_state["Default Place"] = {
"gps": [
"B85005: Shepley Health Centre",
"B85022: Honley Surgery",
"B85061: Skelmanthorpe Family Doctors",
"B85026: Kirkburton Health Centre",
],
"icb": "NHS West Yorkshire ICB",
}
if "places" not in st.session_state:
st.session_state.places = ["Default Place"]
# Functions & Calls
# -------------------------------------------------------------------------
# aggregate on a query and set of aggregations
#Name is the name of the place in the session state, 'aggregations' tells it how to sum each column, 'on' is what to group it by. Not sure what the not in bit is doing.
#Query filters to make sure that GP Display (which is the gp name and code joined together by utils) is in the session state place list
# Function outputs filtered data and grouped, filtered data separately
def aggregate(data, query, name, on, aggregations):
df = data.query(query)
if on not in df.columns:
df.insert(loc=0, column=on, value=name)
df_group = df.groupby(on).agg(aggregations)
df_group = df_group.round(0).astype(int)
return df, df_group
#Calculate index of weighted populations. Take the groupby output fromn the aggregator and divides it by the population number. Do it by icb and place.
#get_index(place_groupby, icb_groupby, index_names, index_numerator)
#place index is divided by icb index to get a relative number
#overall index is final_wp / gp pop
def get_index(place_indices, icb_indices, index_names, index_numerator):
icb_indices[index_names] = icb_indices[index_numerator].div(
icb_indices["GP pop"].values, axis=0
)
place_indices[index_names] = (
place_indices[index_numerator]
.div(place_indices["GP pop"].values, axis=0)
.div(icb_indices[index_names].values, axis=0)
)
return place_indices, icb_indices
# render svg image
def render_svg(svg):
"""Renders the given svg string."""
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
st.write(html, unsafe_allow_html=True)
# Download functionality
@st.cache
def convert_df(df):
return df.to_csv(index=False).encode("utf-8")
#Metric calcs.
def metric_calcs(group_need_indices, metric_index):
place_metric = round(group_need_indices[metric_index][0].astype(float), 2)
icb_metric = round(place_metric - 1, 2)
return place_metric, icb_metric
aggregations = {
"GP pop": "sum",
"Weighted G&A pop": "sum",
"Weighted Community pop": "sum",
"Weighted Mental Health pop": "sum",
"Weighted Maternity pop": "sum",
"Weighted Prescribing pop": "sum",
"Overall Weighted pop": "sum",
"Weighted Primary Care": "sum",
"Weighted Primary Medical Care Need": "sum",
"Weighted Health Inequalities pop": "sum",
}
index_numerator = [
"Weighted G&A pop",
"Weighted Community pop",
"Weighted Mental Health pop",
"Weighted Maternity pop",
"Weighted Prescribing pop",
"Overall Weighted pop",
"Weighted Primary Care",
"Weighted Primary Medical Care Need",
"Weighted Health Inequalities pop",
]
index_names = [
"G&A Index",
"Community Index",
"Mental Health Index",
"Maternity Index",
"Prescribing Index",
"Overall Core Index",
"Primary Medical Care Index",
"Primary Medical Care Need Index",
"Health Inequalities Index",
]
# Markdown
# -------------------------------------------------------------------------
# NHS Logo
svg = """
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 300 16">
<path d="M0 0h40v16H0z" fill="#005EB8"></path>
<path d="M3.9 1.5h4.4l2.6 9h.1l1.8-9h3.3l-2.8 13H9l-2.7-9h-.1l-1.8 9H1.1M17.3 1.5h3.6l-1 4.9h4L25 1.5h3.5l-2.7 13h-3.5l1.1-5.6h-4.1l-1.2 5.6h-3.4M37.7 4.4c-.7-.3-1.6-.6-2.9-.6-1.4 0-2.5.2-2.5 1.3 0 1.8 5.1 1.2 5.1 5.1 0 3.6-3.3 4.5-6.4 4.5-1.3 0-2.9-.3-4-.7l.8-2.7c.7.4 2.1.7 3.2.7s2.8-.2 2.8-1.5c0-2.1-5.1-1.3-5.1-5 0-3.4 2.9-4.4 5.8-4.4 1.6 0 3.1.2 4 .6" fill="white"></path>
</svg>
"""
render_svg(svg)
st.title("ICB Place Based Allocation Tool 2023/24 and 2024/25")
st.markdown("Last Updated 17th January 2023")
# SIDEBAR Prologue (have to run before loading data)
# -------------------------------------------------------------------------
datasets = os.listdir('data/')
selected_dataset = st.sidebar.selectbox("Time Period:", options = datasets, help="Select a time period", format_func=lambda x : x.replace('.csv','').replace('_','/'))
# Import Data
# -------------------------------------------------------------------------
data_loaded = utils.get_data('data/' + selected_dataset)
data = data_loaded.copy()
icb = utils.get_sidebar(data)
# SIDEBAR Main
# -------------------------------------------------------------------------
st.sidebar.subheader("Create New Place")
icb_choice = st.sidebar.selectbox("ICB Filter:", icb, help="Select an ICB")
lad = data["LA District name"].loc[data["ICB name"] == icb_choice].unique().tolist()
lad_choice = st.sidebar.multiselect(
"Local Authority District Filter:", lad, help="Select a Local Authority District"
)
if lad_choice == []:
practices = (
data["practice_display"].loc[data["ICB name"] == icb_choice].unique().tolist()
)
else:
practices = (
data["practice_display"].loc[(data["LA District name"].isin(lad_choice)) & (data["ICB name"] == icb_choice)].tolist()
)
container_one = st.sidebar.container()
if st.sidebar.button("Select all"):
st.session_state['multiselect_contents'] = practices
practice_choice = container_one.multiselect(
"Select GP Practices:",
practices,
key = 'multiselect_contents',
help="Select GP Practices to aggregate into a single defined 'place'. Start typing the name or code of a GP practice into the box to jump to it."
)
place_name = st.sidebar.text_input(
"Name your Place",
"",
help="Give your defined place a name to identify it",
)
if st.sidebar.button("Save Place", help="Save place to session data"):
if practice_choice == [] or place_name == "Default Place":
if practice_choice == []:
st.sidebar.error("Please select one or more GP practices")
if place_name == "Default Place":
st.sidebar.error(
"Please rename your place to something other than 'Default Place'"
)
if place_name == "":
st.sidebar.error("Please give your place a name")
else:
if practice_choice == [] or place_name == "Default Place":
print("")
else:
if (
len(st.session_state.places) <= 1
and st.session_state.places[0] == "Default Place"
):
del [st.session_state["Default Place"]]
del [st.session_state.places[0]]
if [place_name] not in st.session_state:
st.session_state[place_name] = {
"gps": practice_choice,
"icb": icb_choice,
}
if "places" not in st.session_state:
st.session_state.places = [place_name]
if place_name not in st.session_state.places:
st.session_state.places = st.session_state.places + [place_name]
else:
if [place_name] not in st.session_state:
st.session_state[place_name] = {
"gps": practice_choice,
"icb": icb_choice,
}
if "places" not in st.session_state:
st.session_state.places = [place_name]
if place_name not in st.session_state.places:
st.session_state.places = st.session_state.places + [place_name]
st.sidebar.write("-" * 34) # horizontal separator line.
session_state_dict = dict.fromkeys(st.session_state.places, [])
for key, value in session_state_dict.items():
session_state_dict[key] = st.session_state[key]
session_state_dict["places"] = st.session_state.places
session_state_dump = json.dumps(session_state_dict, indent=4, sort_keys=False)
# Use file uploaded to read in groups of practices
advanced_options = st.sidebar.checkbox("Advanced Options")
if advanced_options:
# downloads
st.sidebar.download_button(
label="Download session data as JSON",
data=session_state_dump,
file_name="session.json",
mime="text/json",
)
# uploads
form = st.sidebar.form(key="my-form")
group_file = form.file_uploader(
"Upload previous session data as JSON", type=["json"]
)
submit = form.form_submit_button("Submit")
if submit:
if group_file is not None:
d = json.load(group_file)
st.session_state.places = d["places"]
for place in d["places"]:
st.session_state[place] = d[place]
my_bar = st.sidebar.progress(0)
for percent_complete in range(100):
time.sleep(0.01)
my_bar.progress(percent_complete + 1)
my_bar.empty()
see_session_data = st.sidebar.checkbox("Show Session Data")
# BODY
# -------------------------------------------------------------------------
select_index = len(st.session_state.places) - 1 # find n-1 index
placeholder = st.empty()
option = placeholder.selectbox(
"Select Place", (st.session_state.places), index=select_index, key="before"
)
# DELETE PLACE
# -------------------------------------------------------------------------
if "after" not in st.session_state:
st.session_state.after = st.session_state.before
label = "Delete Current Selection"
delete_place = st.button(label, help=label)
my_bar_delete = st.empty()
if delete_place:
if len(st.session_state.places) <= 1:
del [st.session_state[st.session_state.after]]
if "Default Group" not in st.session_state:
st.session_state["Default Place"] = {
"gps": [
"B85005: Shepley Health Centre",
"B85022: Honley Surgery",
"B85061: Skelmanthorpe Family Doctors",
"B85026: Kirkburton Health Centre",
],
"icb": "NHS West Yorkshire ICB",
}
if "places" not in st.session_state:
st.session_state.places = ["Default Place"]
else:
st.session_state["Default Place"] = {
"gps": [
"B85005: Shepley Health Centre",
"B85022: Honley Surgery",
"B85061: Skelmanthorpe Family Doctors",
"B85026: Kirkburton Health Centre",
],
"icb": "NHS West Yorkshire ICB",
}
st.session_state.places = ["Default Place"]
st.session_state.after = "Default Place"
st.warning(
"All places deleted. 'Default Place' reset to default. Please create a new place."
)
my_bar_delete.progress(0)
for percent_complete in range(100):
time.sleep(0.01)
my_bar_delete.progress(percent_complete + 1)
my_bar_delete.empty()
else:
del [st.session_state[st.session_state.after]]
del [
st.session_state.places[
st.session_state.places.index(st.session_state.after)
]
]
my_bar_delete.progress(0)
for percent_complete in range(100):
time.sleep(0.01)
my_bar_delete.progress(percent_complete + 1)
my_bar_delete.empty()
select_index = len(st.session_state.places) - 1 # find n-1 index
option = placeholder.selectbox(
"Select Place", (st.session_state.places), index=select_index, key="after"
)
icb_name = st.session_state[st.session_state.after]["icb"]
group_gp_list = st.session_state[st.session_state.after]["gps"]
# MAP
# -------------------------------------------------------------------------
map = folium.Map(location=[52, 0], zoom_start=10, tiles="openstreetmap")
lat = []
long = []
for gp in group_gp_list:
if ~data["practice_display"].str.contains(gp).any():
st.write(f"{gp} is not available in this time period")
continue
latitude = data["Latitude"].loc[data["practice_display"] == gp].item()
longitude = data["Longitude"].loc[data["practice_display"] == gp].item()
lat.append(latitude)
long.append(longitude)
folium.Marker(
[latitude, longitude],
popup=str(gp),
icon=folium.Icon(color="darkblue", icon="fa-user-md", prefix="fa"),
).add_to(map)
if not lat:
st.write("No GP Practices in this Place are available in this time period")
st.stop()
# bounds method https://stackoverflow.com/a/58185815
map.fit_bounds(
[[min(lat) - 0.02, min(long)], [max(lat) + 0.02, max(long)]]
) # add buffer to north
# call to render Folium map in Streamlit
folium_static(map, width=700, height=300)
# Group GP practice display
list_of_gps = re.sub(
"\w+:",
"",
str(group_gp_list).replace("'", "").replace("[", "").replace("]", ""),
)
st.info("**Selected GP Practices: **" + list_of_gps)
gp_query = "practice_display == @place_state"
icb_query = "`ICB name` == @icb_state" # escape column names with backticks https://stackoverflow.com/a/56157729
# dict to store all dfs sorted by ICB
dict_obj = {}
df_list = []
#FOR EACH PLACE in the SESSION STATE aggregate the data at the ICB and Place level, calculate indices
#adds them to a dictionary object
for place in st.session_state.places:
place_state = st.session_state[place]["gps"]
icb_state = st.session_state[place]["icb"]
# get place aggregations
place_data, place_groupby = aggregate(
data, gp_query, place, "Place Name", aggregations
)
# get ICB aggregations
icb_data, icb_groupby = aggregate(
data, icb_query, icb_state, "ICB name", aggregations
)
# index calcs
place_indices, icb_indices = get_index(
place_groupby, icb_groupby, index_names, index_numerator
)
icb_indices.insert(loc=0, column="Place / ICB", value=icb_state)
place_indices.insert(loc=0, column="Place / ICB", value=place)
if icb_state not in dict_obj:
dict_obj[icb_state] = [icb_indices, place_indices]
else:
dict_obj[icb_state].append(place_indices)
# add dict values to list
for obj in dict_obj:
df_list.append(dict_obj[obj])
# flaten list for concatination
flat_list = [item for sublist in df_list for item in sublist]
large_df = pd.concat(flat_list, ignore_index=True)
large_df = large_df.round(decimals=3)
# "Weighted G&A pop",
# "Weighted Community pop",
# "Weighted Mental Health pop",
# "Weighted Maternity pop",
# "Weighted Health Inequalities pop",
# "Weighted Prescribing pop",
# "Overall Weighted pop",
# order = [
# 0,
# -9,
# -8,
# -7,
# -6,
# -5,
# -4,
# -2,
# -3,
# -1,
# 1,
# 2,
# 3,
# 4,
# 5,
# 6,
# 7,
# 8,
# 9,
# 10,
# ] # setting column's order
# large_df = large_df[[large_df.columns[i] for i in order]]
# All metrics - didn't work well, but might be useful
# for option in dict_obj:
# st.write("**", option, "**")
# for count, df in enumerate(dict_obj[option][1:]): # skip first (ICB) metric
# # Group GP practice display
# group_name = dict_obj[option][count + 1]["Group / ICB"].item()
# group_gps = (
# "**"
# + group_name
# + " : **"
# + re.sub(
# "\w+:",
# "",
# str(st.session_state[group_name]["gps"])
# .replace("'", "")
# .replace("[", "")
# .replace("]", ""),
# )
# )
# st.info(group_gps)
# cols = st.columns(len(metric_cols))
# for metric, name in zip(metric_cols, metric_names):
# place_metric, icb_metric = metric_calcs(dict_obj[option][count], metric,)
# cols[metric_cols.index(metric)].metric(
# name, place_metric, # icb_metric, delta_color="inverse"
# )
# Metrics
# -------------------------------------------------------------------------
df = large_df.loc[large_df["Place / ICB"] == st.session_state.after]
df = df.reset_index(drop=True)
#Core Index
metric_cols = [
"G&A Index",
"Community Index",
"Mental Health Index",
"Maternity Index",
"Prescribing Index",
"Health Inequalities Index",
]
metric_names = [
"Gen & Acute",
"Community*",
"Mental Health",
"Maternity",
"Prescribing",
"Health Inequals",
]
place_metric, icb_metric = metric_calcs(df, "Overall Core Index")
place_metric = "{:.2f}".format(place_metric)
st.header("Core Index: " + str(place_metric))
st.caption("For relative weighting of components, see the 2nd rows in [workbook J](https://www.england.nhs.uk/wp-content/uploads/2022/04/j-overall-weighted-populations-22-23.xlsx) tabs 'ICB weighted population' and 'GP weighted population'.")
with st.expander("Core Sub Indices", expanded = True):
cols = st.columns(len(metric_cols))
for metric, name in zip(metric_cols, metric_names):
place_metric, icb_metric = metric_calcs(
df,
metric,
)
place_metric = "{:.2f}".format(place_metric)
cols[metric_cols.index(metric)].metric(
name,
place_metric, # icb_metric, delta_color="inverse"
)
#Primary Care Index
#Core Index
metric_cols = [
"Primary Medical Care Need Index",
"Health Inequalities Index",
]
metric_names = [
"Primary Medical Care Need***",
"Health Inequals",
]
place_metric, icb_metric = metric_calcs(df, "Primary Medical Care Index")
place_metric = "{:.2f}".format(place_metric)
st.header("Primary Medical Care Index: " + str(place_metric))
st.caption("Based on weighted populations from the formula for ICB allocations, not the global sum weighted populations**")
with st.expander("Primary Medical Care Sub Indices", expanded = True):
cols = st.columns(3)
for metric, name in zip(metric_cols, metric_names):
place_metric, icb_metric = metric_calcs(
df,
metric,
)
place_metric = "{:.2f}".format(place_metric)
cols[metric_cols.index(metric)].metric(
name,
place_metric, # icb_metric, delta_color="inverse"
)
# Downloads
# -------------------------------------------------------------------------
current_date = datetime.now().strftime("%Y-%m-%d")
st.subheader("Download Data")
print_table = st.checkbox("Preview data download", value=True)
if print_table:
with st.container():
utils.write_table(large_df)
# csv_header = b'WARNING: this is a warning message'
csv_header1 = b"\"PLEASE READ: Below you can find the results for the places you created, and for the ICB they belong to, for the year you selected.\""
csv_header2 = b"\"Note that the need indices for the places are relative to the ICB (where the ICBs need index = 1.00), while the need index for the ICB is relative to national need (where the national need index = 1.00).\""
csv_header3 = b"\"This means that the need indices of the individual places cannot be compared to the need index of the ICB. For more information, see the user guide available from https://www.england.nhs.uk/allocations/.\""
csv_header4 = b"\"\""
wf = convert_df(large_df)
full_csv = b'\n'.join([csv_header1, csv_header2, csv_header3, csv_header4, wf])
with open("docs/ICB allocation tool documentation.txt", "rb") as fh:
readme_text = io.BytesIO(fh.read())
session_state_dict = dict.fromkeys(st.session_state.places, [])
for key, value in session_state_dict.items():
session_state_dict[key] = st.session_state[key]
session_state_dict["places"] = st.session_state.places
session_state_dump = json.dumps(session_state_dict, indent=4, sort_keys=False)
# https://stackoverflow.com/a/44946732
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file:
for file_name, data in [
(f"ICB allocation calculations {selected_dataset}", io.BytesIO(full_csv)),
("ICB allocation tool documentation.txt", readme_text),
(
"ICB allocation tool configuration file.json",
io.StringIO(session_state_dump),
),
]:
zip_file.writestr(file_name, data.getvalue())
btn = st.download_button(
label="Download ZIP",
data=zip_buffer.getvalue(),
file_name="ICB allocation tool %s.zip" % current_date,
mime="application/zip",
)
st.subheader("Help and Support")
with st.expander("About the ICB Place Based Allocation Tool"):
st.subheader("Allocations")
st.markdown(
"This tool is designed to support allocation at places by allowing places to be defined by aggregating GP Practices within an ICB. Please refer to the User Guide for instructions."
)
st.markdown("The tool estimates the relative need for places within the ICB.")
st.markdown(
"The Relative Need Index for ICB (i) and Defined Place (p) is given by the formula:"
)
st.latex(r""" (WP_p/GP_p)\over (WP_i/GP_i)""")
st.markdown(
"Where *WP* is the weighted population for a given need and *GP* is the GP practice population."
)
st.markdown(
f"This tool is based on estimated need for 2023/24 and 2024/25 by utilising weighted populations projected from the November 2021 to October 2022 GP Registered practice populations."
)
st.markdown(
"More information on the latest allocations, including contact details, can be found [here](https://www.england.nhs.uk/allocations/)."
)
st.subheader("Caveats and Notes")
st.markdown(
"*The Community Services index relates to the half of Community Services that are similarly distributed to district nursing. The published Community Services target allocation is calculated using the Community Services model. This covers 50% of Community Services. The other 50% is distributed through the General & Acute model."
)
st.markdown("")
st.markdown(
"**The global sum weighted populations are calculated using the Carr-Hill formula. The global sum weighted populations are a key component of payments to GP practices under the GMS contract. Funding GP practices is part of ICB’s commissioning responsibilities."
)
st.markdown("")
st.markdown(
"***The Primary Medical Care Need Indices will not include the dispensing doctors adjustment – this is applied at ICB level."
)
st.info(
"For support with using the AIF Allocation tool please email: [[email protected]](mailto:[email protected])"
)
# Show Session Data
# -------------------------------------------------------------------------
if see_session_data:
st.subheader("Session Data")
st.session_state