-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenProg.cpp
267 lines (228 loc) · 8.7 KB
/
genProg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//
// genProg.cpp
// 244GeneticProgramming
// 21297899
// Created by Miriam Lennig on 2016-03-28.
// Copyright © 2016 Miriam Lennig. All rights reserved.
//
#include "genProg.hpp"
#include <cmath>
#include <vector>
using namespace std;
const unsigned long maxRand = 2147483647;
Individual::Individual(Model* m, double range) : model(m){
// Fill feature vector x with random doubles in [-range, range] and compute fitness
unsigned nfeat = model->numFeatures();
for(int i = 0; i < nfeat; i++)
x.push_back(2 * range * rand() / maxRand - range);
storedFitness = model->computeFitness(x);
}
Individual::Individual(Model* m, vector<double>& xvalues) : model(m){
// Fill feature vector x with values from vector passed to it and compute fitness
unsigned nfeat = model->numFeatures();
for(int i = 0; i < nfeat; i++)
x.push_back(xvalues[i]);
storedFitness = model->computeFitness(x);
}
void Individual::print() const{
// Prints the n-dimensional feature vector that characterizes this individual
unsigned long nfeat = x.size();
for(int i = 0; i < nfeat; i ++)
cout << x[i] << "\t\t";
cout << endl;
}
double Individual::fitness() const{
return storedFitness;
}
void Individual::mutate(){
// Mutates the individual in place using real valued mutation
// http://www.geatbx.com/docu/algindex-03.html#P550_28854
unsigned nfeat = model->numFeatures(); // Get number of features
double mutateProb = 1./nfeat; // Probability of mutation is 1/nfeat
// For explanation of domain, r, k, u, s, a, see the web reference above
double domain = 100;
double r = 0.1 * domain; // range = r in [0.1, 10^-6]
unsigned k = 15; // precision = k in {4, ... ,20}
double u, s, a;
for(int i = 0; i < nfeat; i++)
if(rand() < mutateProb * maxRand){
u = double(rand()) / maxRand;
s = 2. * rand() / maxRand - 1;
a = pow(2, -u * k);
x[i] += s * r * a;
}
storedFitness = model->computeFitness(x); // Recompute fitness of mutated child
}
Individual& Individual::procreate(const Individual& mate) const {
// Create a new Individual using intermediate recombination
// http://www.geatbx.com/docu/algindex-03.html#P550_28854
unsigned nfeat = model->numFeatures();
double d = 0.25;
double a;
vector<double> z;
for(int i = 0; i < nfeat; i++){
a = (1 + 2 * d) * rand() / maxRand - d; // a in [-d, 1 + d]
z.push_back(a * x[i] + (1 - a) * mate.x[i]);
}
Individual* pChild = new Individual (model, z);
pChild->mutate();
return *pChild;
}
LangFit::LangFit(double range){
// Assign random values to matrices c, a
for(int i = 0; i < 5; i++){
c[i] = 2 * range *double(rand())/maxRand - range;
for(int j = 0; j < 2; j++)
a[i][j] = 2 * range *double(rand())/maxRand - range;
}
}
unsigned LangFit::numFeatures() const {
return nFeatures;
}
void LangFit::print() const {
// Print constants of the LangFit object
cout << "Constants of the LangFit model object: " << endl;
cout << "The c matrix is:\n";
for (int i = 0; i < 5; i++)
cout << c[i] << "\t\t";
cout << endl << endl;
cout << "The a matrix is:\n";
for (int i = 0; i < 5; i++){
for (int j = 0; j < 2; j++)
cout << a[i][j] << "\t\t";
cout << endl;
}
cout << endl;
}
double LangFit::computeFitness(vector<double>& x) const{
// Generates the value of the Langermann function
const double pi = 3.1415926535;
const double e = 2.71828182846;
double f = 0;
for(int i = 0; i < 5; i++){
double secondSum = 0;
for(int j = 0; j < 2; j++)
secondSum += pow((x[j] - a[i][j]), 2);
double thirdSum = 0;
for(int j = 0; j < 2; j++)
thirdSum += pow((x[j] - a[i][j]), 2);
f += c[i] * pow(e, -secondSum / pi) * cos(pi * thirdSum);
}
return f;
}
CubicFit::CubicFit(double range, int n){
// Initialize n random (x, y) points
for(int i = 0; i < n; i++){
x.push_back(2 * range * rand() / maxRand - range);
y.push_back(2 * range * rand() / maxRand - range);
}
}
void CubicFit::print() const{
cout << "Printing (x, y) coordinate pairs for MSE cubic fit:\n";
unsigned long n = x.size();
for (int i = 0; i < n; i++)
cout << "(" << x[i] << ", " << y[i] << ")\n";
cout << endl;
}
double CubicFit::computeFitness(vector<double>& coeffs) const {
// Fitness function is the MSE fit to the point cloud
double mse = 0;
unsigned long n = x.size();
double yp;
for(int i = 0; i < n; i ++){
yp = coeffs[0] + coeffs[1]*x[i] + coeffs[2]*pow(x[i], 2) + coeffs[3]*pow(x[i], 3);
mse += pow(yp - y[i], 2);
}
mse /= n;
return mse;
}
unsigned CubicFit::numFeatures() const {
return nFeatures;
}
bool cmp(const Individual& i1, const Individual& i2){
return i1.fitness() <= i2.fitness();
}
Individual& Evolution::chooseParent(){
// Use tournament selection to choose one parent from the population pool
list<Individual>::iterator it1 = population.begin();
list<Individual>::iterator it2 = population.begin();
list<Individual>::iterator it3 = population.begin();
// Select 3 random candidates from population
unsigned long index = rand() % popSize; // Index number of item in population list
advance(it1, index); // Increments it1 by index
index = rand() % popSize; // Re-randomize index number
advance(it2, index);
index = rand() % popSize;
advance(it3, index);
// Perform tournament selection to choose 1 parent
if ((it1->fitness() < it2->fitness()) && (it1->fitness() < it3->fitness()))
return *it1;
else if ((it2->fitness() < it1->fitness()) && (it2->fitness() < it3->fitness()))
return *it2;
else
return *it3;
}
void Evolution::cull(){
// Delete all but the first popSize individuals from population
list<Individual>::iterator iter = population.begin();
advance(iter, popSize); // iter is now pointing to where we want the end to be, to return to original population size
population.erase(iter, population.end()); // Erase all individuals after popSize
}
bool Evolution::stopCriterion(){
// Stop when the ratio of the fitness of worst and best individuals is equal to 1.0 in single precision
// or if maximum # of iterations have been reached using a ratio
float ratio;
if(numIterations > maxIterations){
cout << "Max # of iterations has been reached\n\n";
return true;
}
double bestFitness = population.front().fitness();
double worstFitness = population.back().fitness();
if (worstFitness != 0)
ratio = bestFitness / worstFitness;
else if (bestFitness != 0)
ratio = worstFitness / bestFitness;
else if (worstFitness == bestFitness)
ratio = 1;
else
ratio = 10;
if (ratio == 1) {
return true;
}
return false;
}
void Evolution::print(){
// Displays intermediate results
cout << "Number of iterations: " << numIterations << endl;
cout << "The best individual has fitness: " << population.front().fitness() << " and the following features:\n";
population.front().print();
cout << "The worst individual has fitness: " << population.back().fitness() << " and the following features:\n";
population.back().print();
cout << endl;
}
Evolution::Evolution(Model& m, double r, unsigned pSize, unsigned maxIter, bool verbose) : model(m), maxIterations(maxIter), popSize(pSize), range(r) {
// Runs main genetic algorithm
// Create popSize random individuals & put them into the population
for(int i = 0; i < popSize; i++)
population.push_back(Individual(&model, range));
population.sort(cmp); // Sort from fittest to least fit
if(verbose)
print();
while(!stopCriterion()){ // Main loop
// Procreation loop
while(children.size() < 10 * popSize){
// Choose 2 parents from the population by tournament selection
Individual& parent1 = chooseParent();
Individual& parent2 = chooseParent();
// Make 2 children from chosen parents, push them into the children pool
children.push_back(parent1.procreate(parent2));
children.push_back(parent1.procreate(parent2));
}
population.merge(children, cmp);
population.sort(cmp); // Sort from lowest fitness to highest fitness
cull(); // Erase all individuals after popSize one
numIterations++; // Increment iteration counter
if(verbose)
print(); // Print intermediate results
}
}