-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcifar.py
352 lines (282 loc) · 14.6 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import json
import os
import pdb
import pickle
import random
import re
import string
import math
from copy import deepcopy
from collections import defaultdict
from glob import glob
import numpy as np
import torch; #torch.backends.cudnn.deterministic = False;
torch.backends.cudnn.benchmark = True
from torch import nn
from torch import optim
from hyper import wrapped_fedex
from hyper import Server
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
BATCH = 100
SERVER = lambda: {
'lr': 10.0 ** np.random.uniform(low=-1.0, high=1.0),
'momentum': np.random.choice([0.0, 0.9]),
'step': 1,
'gamma': 1.0 - 10.0 ** np.random.uniform(low=-4.0, high=-2.0),
}
CLIENT = lambda: {
'lr': 10.0 ** np.random.uniform(low=-4.0, high=0.0),
'momentum': np.random.uniform(low=0.0,high=1.0),
'weight_decay': 10.0 ** np.random.uniform(low=-5.0, high=-1.0),
'epochs': np.random.choice(np.arange(1, 6)),
'batch': 2 ** np.random.choice(np.arange(3, 8)),
'mu': 10.0 ** np.random.uniform(low=-5.0, high=0.0),
'dropout': np.random.uniform(low=0.0, high=0.5),
}
def parse():
parser = argparse.ArgumentParser()
parser.add_argument('logdir')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--debug', default=0, type=int,
help='run in DEBUG mode if >0; sets number of clients and batches')
# wrapper algorithm settings
parser.add_argument('--rounds', default=800, type=int,
help='maximum number of communication rounds')
parser.add_argument('--total', default=4000, type=int,
help='total number of communication rounds')
parser.add_argument('--rate', default=3, type=int, help='elimination rate')
parser.add_argument('--elim', default=0, type=int, help='number of elimination rounds')
parser.add_argument('--eval', default=1, type=int, help='number of evaluation rounds')
parser.add_argument('--discount', default=0.0, type=float,
help='discount factor for computing the validation score of an arm')
# FedEx settings
parser.add_argument('--batch', default=10, type=int, help='number of tasks per round')
parser.add_argument('--configs', default=1, type=int,
help='''number of configs to optimize over with FedEx (use 1 for FedAvg):
- <-1: sample a random number between 1 and abs(args.configs)
- =-1: sample the number of arms given by the wrapper
- =0: sample a random number between 1 and the number of arms
- >0: sample the provided number, ignoring the number of arms''')
parser.add_argument('--lr_only', action='store_true', help='tune only learning rate as a hyperparameter')
parser.add_argument('--eps', default=0.0, type=float, help='multiplicative perturbation to client config, eps=0 is fedavg')
parser.add_argument('--uniform', action='store_true',
help='run FedEx over a product set of single-parameter uniform grids')
parser.add_argument('--random', action='store_true',
help='run FedEx over a product set of single-parameter random grids')
parser.add_argument('--eta0', default=0.0, type=float,
help='FedEx initial step size; if 0.0 uses FedEx default')
parser.add_argument('--sched', default='aggressive', type=str, help='FedEx step size sched')
parser.add_argument('--cutoff', default=0.0, type=float,
help='stop updating FedEx config distribution if entropy below this cutoff')
parser.add_argument('--baseline', default=-1.0, type=float,
help='''how FedEx computes the baseline:
- >=-1.0,<0.0: sample discount factor from [0.0, abs(args.baseline))
- =0.0: use the most recent value
- >0.0,<1.0: use geometrically discounted mean with this factor
- =1.0: use the mean of all values''')
parser.add_argument('--diff', action='store_true',
help='use difference between refine and global as FedEx objective')
parser.add_argument('--stop', action='store_true',
help='stop updating FedEx config distribution after last elimination')
# evaluation settings
parser.add_argument('--mle', action='store_true', help='use MLE config at test time')
parser.add_argument('--loss', action='store_true', help='use loss instead of error')
parser.add_argument('--eval_global', action='store_true', help='use global error as elimination metric instead of refine')
# data settings
parser.add_argument('--val', default=0.2, type=float, help='proportion of training set to use for validation')
parser.add_argument('--num-clients', default=500, type=int, help='number of clients')
return parser.parse_args()
def file2tensor(fname):
with open(fname, 'r') as f:
data = json.load(f)
X = torch.from_numpy(np.asarray(data['x'])).float()
Y = torch.from_numpy(np.asarray(data['y'])).long()
return X, Y
def get_loader(train_idx, test_idx, train_data, test_data, val=0.2):
data = {}
m = int((1.-val) * len(train_idx))
data['train'] = torch.utils.data.DataLoader(train_data,
sampler=torch.utils.data.SubsetRandomSampler(train_idx[:m]),
batch_size=m,
shuffle=False,
pin_memory=True)
data['val'] = torch.utils.data.DataLoader(train_data,
sampler=torch.utils.data.SubsetRandomSampler(train_idx[m:]),
batch_size=len(train_idx)-m,
shuffle=False,
pin_memory=True)
data['test'] = torch.utils.data.DataLoader(test_data,
sampler=torch.utils.data.SubsetRandomSampler(test_idx),
batch_size=len(test_idx),
shuffle=False,
pin_memory=True)
def loader(*args):
output = []
for arg in args:
Xarg, Yarg = next(iter(data[arg]))
output.append(Xarg.cuda(non_blocking=True))
output.append(Yarg.cuda(non_blocking=True))
return output
return loader
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(32, 64, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.conv3 = nn.Sequential(
nn.Conv2d(64, 64, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.dropout = nn.Dropout(0.0)
self.fc = nn.Sequential(
nn.Linear(1024, 64),
nn.ReLU(),
)
self.clf = nn.Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.fc(self.dropout(x.flatten(1)))
return self.clf(self.dropout(x))
def get_prox(model, criterion=nn.CrossEntropyLoss(), mu=0.0):
if not mu:
return criterion
mu *= 0.5
model0 = [param.data.clone() for param in model.parameters()]
def objective(*args, **kwargs):
prox = sum((param-param0).pow(2).sum()
for param, param0 in zip(model.parameters(), model0))
return criterion(*args, **kwargs) + mu * prox
return objective
def train(model, X, Y, batch=32, dropout=0.0, epochs=1, mu=0.0, **kwargs):
optimizer = optim.SGD(model.parameters(), **kwargs)
criterion = get_prox(model, mu=mu)
model.dropout.p = dropout
model.train()
m = len(Y)
for e in range(epochs):
randperm = torch.randperm(m)
X, Y = X[randperm], Y[randperm]
for i in range(0, m, batch):
Xbatch, Ybatch =X[i:i+batch], Y[i:i+batch]
pred = model(Xbatch)
loss = criterion(pred, Ybatch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
return model
def test_batch(model, X, Y):
pred = model(X)
return (Y != pred.argmax(1)).sum().float(), nn.CrossEntropyLoss(reduction='sum')(pred, Y).float()
def test(model, X, Y, batch=BATCH):
model.eval()
with torch.no_grad():
errors, losses = zip(*(test_batch(model, X[i:i+batch], Y[i:i+batch])
for i in range(0, len(Y), batch)))
return float(sum(errors)) / len(Y), float(sum(losses)) / len(Y)
def main():
args = parse()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_data = datasets.CIFAR10(root='./data',
train=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
transforms.ToTensor(),
normalize,
]),
download=True)
test_data = datasets.CIFAR10(root='./data',
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]),
download=True)
train_perm, test_perm = torch.randperm(50000), torch.randperm(10000)
tasks = [get_loader(train_perm[i:i+50000//args.num_clients], test_perm[j:j+10000//args.num_clients], train_data, test_data, val=args.val)
for i, j in zip(range(0, 50000, 50000//args.num_clients), range(0, 10000, 10000//args.num_clients))]
if args.debug:
tasks = tasks[:args.debug]
print('DEBUG MODE')
def local_train(model, X, Y, **kwargs):
if args.debug:
return train(model, X[:args.debug*args.batch], Y[:args.debug*args.batch], **kwargs)
return train(model, X, Y, **kwargs)
def local_test(model, X, Y, **kwargs):
return test(model, X, Y, **kwargs)[args.loss]
def get_server():
model = CNN()
return Server(model, tasks, local_train, local_test, batch=args.batch, **SERVER())
def get_client(n_clients=1):
'''performs local tuning for each hyperparameter'''
if args.lr_only:
return [SIMPLE_CLIENT()]
initial_client = CLIENT()
client_arr = [initial_client]
eps = args.eps
for i in range(n_clients-1):
other_client = deepcopy(initial_client)
log_lr = np.log10(other_client['lr'])
other_client['lr'] = 10 ** np.clip(log_lr + np.random.uniform(4*-eps, 4*eps), -4.0, 0.0)
other_client['momentum'] = np.clip(initial_client['momentum'] + np.random.uniform(-eps, eps), 0, 1.0)
log_wd = np.log10(other_client['weight_decay'])
other_client['weight_decay'] = 10 ** np.clip(log_wd + np.random.uniform(4*-eps, 4*eps),-5.0, -1.0)
epochs_range = math.ceil(eps * 4)
other_client['epochs'] = np.clip(np.random.choice(np.arange(initial_client['epochs']-epochs_range, initial_client['epochs']+epochs_range+1)), 1, 5)
log_batch = int(np.log2(other_client['batch']))
batch_range = math.ceil(eps * 4)
other_client['batch'] = 2 ** np.clip(np.random.choice(np.arange(log_batch-batch_range, log_batch+batch_range+1)), 3, 7)
log_mu = np.log10(other_client['mu'])
other_client['mu'] = 10 ** np.clip(log_mu + np.random.uniform(5*-eps, 5*eps), -5.0 , 0.0)
other_client['dropout'] = np.clip(initial_client['dropout'] + np.random.uniform(0.5*-eps, 0.5*eps),0, 0.5)
client_arr.append(other_client)
return [UNIFORM()] if args.uniform else [RANDOM()] if args.random else client_arr
print('Tuning',
'FedAvg' if args.configs == 1 and not (args.uniform or args.random) else 'FedEx',
'on Cifar10')
os.makedirs(args.logdir, exist_ok=True)
with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=4)
wrapped_fedex(
get_server,
get_client,
num_configs=args.configs,
prod=args.uniform or args.random,
stepsize_init=args.eta0 if args.eta0 else 'auto',
stepsize_sched=args.sched,
cutoff=args.cutoff,
baseline_discount=args.baseline,
diff=args.diff,
mle=args.mle,
logdir=args.logdir,
val_discount=args.discount,
last_stop=args.stop,
max_resources=args.rounds,
total_resources=args.total,
elim_rate=args.rate,
num_elim=args.elim,
num_eval=args.eval,
eval_global=args.eval_global
)
if __name__ == '__main__':
main()