-
Notifications
You must be signed in to change notification settings - Fork 76
/
model_quantizer.py
678 lines (584 loc) · 31.6 KB
/
model_quantizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
"""Quantize LLaMA model to specific Quantization methods.
Usage:
python model_quantizer.py --model_path <path to TinyEngine modelt> --method <Quantization method>
Example commands:
python tools/model_quantizer.py --model_path models/LLaMA_7B_2_chat --method QM_x86
python tools/model_quantizer.py --model_path FP32/models/OPT_125m --method QM_ARM --output_path INT4
"""
import argparse
import os
import shutil
import numpy as np
from quantize_constants import STORE_FP16
from quantize_methods import (
_convert_to_fp16,
quantize_row_q4_2,
quantize_row_q4_3,
quantize_row_q4_4,
quantize_row_q4_6,
)
quantization_funcs = {
"QM_x86": quantize_row_q4_3,
"QM_METAL": quantize_row_q4_2,
"QM_ARM": quantize_row_q4_4,
"QM_CUDA": quantize_row_q4_6,
}
# Write quantized data into binary file
def _write_weight_to_file(prefix: str, qs, d, m, zp, is_cuda=False, is_lm_head=False):
# Convert to bytes
if is_cuda:
qs_data = np.asarray(qs, dtype=np.int32).tobytes()
d_data = np.asarray(d, dtype=np.float16).tobytes() # Need to be converted to fp16 in CUDA
m_data = np.asarray(
m, dtype=np.float16
).tobytes() # TODO: Currently, we don't use offsets for CUDA so this is redundant
zp_data = np.asarray(zp, dtype=np.int32).tobytes()
else:
qs_data = np.asarray(qs, dtype=np.uint8).tobytes()
d_data = np.asarray(d, dtype=np.float32).tobytes()
m_data = np.asarray(m, dtype=np.float32).tobytes()
zp_data = np.asarray(zp, dtype=np.float32).tobytes()
# Write data
if is_lm_head:
out_path = prefix + "/lm_head"
else:
out_path = prefix
os.makedirs(out_path, exist_ok=True)
with open(out_path + "/weight_int4.bin", "wb") as f:
f.write(qs_data)
with open(out_path + "/scaling_factor_int4.bin", "wb") as f:
f.write(d_data)
with open(out_path + "/offset_int4.bin", "wb") as f:
f.write(m_data)
with open(out_path + "/zero_point_int4.bin", "wb") as f:
f.write(zp_data)
f.close()
# Quantize fp32 data to fp16, and write it into binary file
def _write_fp16_to_file(output_path: str, input_path: str, array_size, dim_x, dim_y, dim_z):
assert array_size == dim_x * dim_y * dim_z
with open(input_path, mode="rb") as fp:
fp32_data = fp.read()
fp.close()
# Convert to bytes
fp16_data = _convert_to_fp16(np.frombuffer(fp32_data, dtype=np.float32)).tobytes()
os.makedirs(output_path, exist_ok=True)
output_path = output_path.split(".bin")[0] + "_half.bin"
with open(output_path, "wb") as f:
f.write(fp16_data)
f.close()
def _rm_and_cp_dir_if_exist(src, des):
if os.path.exists(des):
shutil.rmtree(des)
shutil.copytree(src, des)
# Read quantized data from binary file
def _read_weight_from_file(prefix: str):
print(f"Reading quantized data from {prefix}...")
with open(prefix + "/weight_int4.bin", "rb") as f:
qs_data = f.read()
with open(prefix + "/scaling_factor_int4.bin", "rb") as f:
d_data = f.read()
with open(prefix + "/offset_int4.bin", "rb") as f:
m_data = f.read()
with open(prefix + "/zero_point_int4.bin", "rb") as f:
zp_data = f.read()
f.close()
return qs_data, d_data, m_data, zp_data
# Quantize model
def _quantize_model(
prefix: str,
method: str,
output_path: str,
data_type: str = "fp32",
is_cuda: bool = False,
):
# Check model name
model_name_size = prefix.split("/")[-1]
if model_name_size == "OPT_125m":
layer_num = 12
elif model_name_size == "OPT_1.3B":
layer_num = 24
elif model_name_size == "OPT_6.7B":
layer_num = 32
elif model_name_size.startswith("LLaMA_3_8B") or model_name_size.startswith("LLaMA_7B") or model_name_size.startswith("CodeLLaMA_7B") or model_name_size.startswith("LLaVA_7B") or model_name_size.startswith("VILA_7B") or model_name_size.startswith("VILA_2.7B"):
layer_num = 32
elif model_name_size.startswith("Mistral_7B"):
layer_num = 32
elif model_name_size.startswith("LLaMA_13B") or model_name_size.startswith("CodeLLaMA_13B") or model_name_size.startswith("LLaVA_13B") or model_name_size.startswith("VILA_13B"):
layer_num = 40
elif model_name_size.startswith("StarCoder"):
layer_num = 40
else:
raise ValueError(
"Invalid model name. Expected 'OPT_125m', 'OPT_1.3B', 'OPT_6.7B', 'LLaMA_3_8B', 'LLaMA_7B', 'LLaMA_13B', \
'CodeLLaMA_7B', 'CodeLLaMA_13B', 'StarCoder', 'LLaVA_7B', 'LLaVA_13B', 'VILA_2.7B', 'VILA_7B', 'VILA_13B', \
or 'Mistral_7B'."
)
# Check quantization method
if method not in quantization_funcs:
raise ValueError(f"Invalid quantization method. Expected one of {quantization_funcs.keys()}")
quantize_method = quantization_funcs[method]
# Check data type
if data_type == "fp32":
bytes_per_element = 4
elif data_type == "fp16":
bytes_per_element = 2
elif data_type == "int8":
bytes_per_element = 1
else:
raise ValueError("Invalid data type. Expected 'fp32', 'fp16', or 'int8'.")
print(f"Quantizing {model_name_size} with {method} method... (original data type: {data_type})")
model_name = model_name_size
# OPT
if model_name.startswith("OPT"):
# Quantize lm_head
file_path = f"{prefix}"
weight_path = f"{file_path}/lm_head.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, 1, array_size) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda, True)
print("Quantization of lm_head finished.")
# Quantize embed_positions
dir_path = f"{prefix}/decoder/embed_positions"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# embed_tokens
dir_path = f"{prefix}/decoder/embed_tokens"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# final_layer_norm
dir_path = f"{prefix}/decoder/final_layer_norm"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# Quantize layers
for idx in range(layer_num):
# Quantize fc1
file_path = f"{prefix}/decoder/layer{idx}/fc1"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# Quantize fc2
file_path = f"{prefix}/decoder/layer{idx}/fc2"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# final_layer_norm
dir_path = f"{prefix}/decoder/layer{idx}/final_layer_norm"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# self_attn_layer_norm
dir_path = f"{prefix}/decoder/layer{idx}/self_attn_layer_norm"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# Quantize self_attn/k_proj
file_path = f"{prefix}/decoder/layer{idx}/self_attn/k_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# Quantize self_attn/out_proj
file_path = f"{prefix}/decoder/layer{idx}/self_attn/out_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# Quantize self_attn/q_proj
file_path = f"{prefix}/decoder/layer{idx}/self_attn/q_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# Quantize self_attn/v_proj
file_path = f"{prefix}/decoder/layer{idx}/self_attn/v_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# Scaling
file_path = f"{prefix}/decoder/layer{idx}/self_attn/"
os.system(
f"cp {os.path.join(file_path, 'scaling.bin')} {os.path.join(output_path, file_path, 'scaling.bin')}"
)
print(f"Quantization of layer {idx} finished.")
# LLaMA / LLaVA / VILA
elif model_name.startswith("LLaMA") or model_name.startswith("CodeLLaMA") or model_name.startswith("LLaVA") \
or model_name.startswith("VILA") or model_name.startswith("Mistral"):
if model_name.startswith("LLaMA_7B") or model_name.startswith("CodeLLaMA_7B") or model_name.startswith("LLaVA_7B") \
or model_name.startswith("VILA_7B"):
embed_dim = 4096
hidden_dim = 11008
elif model_name.startswith("LLaMA_13B") or model_name.startswith("CodeLLaMA_13B") or model_name.startswith("LLaVA_13B") \
or model_name.startswith("VILA_13B"):
embed_dim = 5120
hidden_dim = 13824
elif model_name.startswith("VILA_2.7B"):
embed_dim = 2560
hidden_dim = 6912
elif model_name.startswith("Mistral_7B") or model_name.startswith("LLaMA_3_8B"):
embed_dim = 4096
hidden_dim = 14336
else:
raise NotImplementedError(f"{model_name} not supported.")
if model_name.startswith("LLaMA_7B") or model_name.startswith("LLaMA_13B") or model_name.startswith("LLaVA_7B") or model_name.startswith("LLaVA_13B") or model_name.startswith("VILA_2.7B") or model_name.startswith("Mistral_7B"):
vocab_size = 32000
elif model_name.startswith("VILA_2.7B") or model_name.startswith("VILA_7B") or model_name.startswith("VILA_13B"):
vocab_size = 32000
elif model_name.startswith("CodeLLaMA_7B") or model_name.startswith("CodeLLaMA_13B"):
vocab_size = 32016
elif model_name.startswith("LLaMA_3_8B"):
vocab_size = 128256
if model_name.startswith("LLaVA_7B") or model_name.startswith("LLaVA_13B") or model_name.startswith("VILA_2.7B") or model_name.startswith("VILA_7B") or model_name.startswith("VILA_13B"):
max_seq_len = 4096
elif model_name.startswith("LLaMA_3_8B"):
max_seq_len = 8192
elif model_name.startswith("Mistral_7B"):
max_seq_len = 32768
else:
max_seq_len = 2048
# Quantize lm_head
file_path = f"{prefix}"
weight_path = f"{file_path}/lm_head.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, embed_dim, vocab_size)
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda, True)
print("Quantization of lm_head finished.")
# Quantize embed_tokens
dir_path = f"{prefix}/decoder/embed_tokens"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
print("Quantization of embed_tokens finished.")
# Quantize layers
for idx in range(layer_num):
# Quantize down_proj
file_path = f"{prefix}/decoder/layer{idx}/down_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, hidden_dim, embed_dim)
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
# Quantize gate_proj
file_path = f"{prefix}/decoder/layer{idx}/gate_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, embed_dim, hidden_dim)
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
# Quantize input_layernorm
dir_path = f"{prefix}/decoder/layer{idx}/input_layernorm"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# Quantize post_attention_layernorm
dir_path = f"{prefix}/decoder/layer{idx}/post_attention_layernorm"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# Quantize self_attn/k_proj
file_path = f"{prefix}/decoder/layer{idx}/self_attn/k_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, embed_dim, embed_dim)
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
# Quantize self_attn/o_proj
file_path = f"{prefix}/decoder/layer{idx}/self_attn/o_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, embed_dim, embed_dim)
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
# Quantize self_attn/q_proj
file_path = f"{prefix}/decoder/layer{idx}/self_attn/q_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, embed_dim, embed_dim)
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
# Quantize self_attn/v_proj
file_path = f"{prefix}/decoder/layer{idx}/self_attn/v_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, embed_dim, embed_dim)
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
# Quantize self_attn/rotary_emb
# Quantize self_attn/qk_bmm
if is_cuda:
file_path = f"{prefix}/decoder/layer{idx}/self_attn/rotary_emb"
# cos_cached.bin
weight_path = f"{file_path}/cos_cached.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
_write_fp16_to_file(os.path.join(output_path, weight_path), weight_path, array_size, 1, max_seq_len, 128)
# sin_cached.bin
weight_path = f"{file_path}/sin_cached.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
_write_fp16_to_file(os.path.join(output_path, weight_path), weight_path, array_size, 1, max_seq_len, 128)
file_path = f"{prefix}/decoder/layer{idx}/self_attn/qk_bmm"
weight_path = f"{file_path}/alpha.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
_write_fp16_to_file(os.path.join(output_path, weight_path), weight_path, array_size, 1, 1, 1)
else:
# cp self_attn/rotary_emb
dir_path = f"{prefix}/decoder/layer{idx}/self_attn/rotary_emb"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# cp self_attn/qk_bmm
dir_path = f"{prefix}/decoder/layer{idx}/self_attn/qk_bmm"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# Quantize up_proj
file_path = f"{prefix}/decoder/layer{idx}/up_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, embed_dim, hidden_dim)
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
print(f"Quantization of layer {idx} finished.")
# Quantize norm
file_path = f"{prefix}/decoder/norm"
weight_path = f"{file_path}/weight.bin"
_rm_and_cp_dir_if_exist(file_path, os.path.join(output_path, file_path))
print("Quantization of norm finished.")
# StarCoder
elif model_name.startswith("StarCoder"):
# Quantize lm_head
file_path = f"{prefix}"
weight_path = f"{file_path}/lm_head.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(weight_path, array_size, data_type, 1, array_size) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda, True)
print("Quantization of lm_head finished.")
# Quantize wpe
dir_path = f"{prefix}/decoder/wpe"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# wte
dir_path = f"{prefix}/decoder/wte"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# ln_f
dir_path = f"{prefix}/decoder/ln_f"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# Quantize layers
for idx in range(layer_num):
# Quantize c_fc
file_path = f"{prefix}/decoder/layer{idx}/c_fc"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# Quantize c_proj
file_path = f"{prefix}/decoder/layer{idx}/c_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# ln_1
dir_path = f"{prefix}/decoder/layer{idx}/ln_1"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# ln_2
dir_path = f"{prefix}/decoder/layer{idx}/ln_2"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
# Quantize attn/c_attn
file_path = f"{prefix}/decoder/layer{idx}/attn/c_attn"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# Quantize attn/c_proj
file_path = f"{prefix}/decoder/layer{idx}/attn/c_proj"
weight_path = f"{file_path}/weight.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
qs, d, m, zp = quantize_method(
weight_path, array_size, data_type, 1, array_size
) # TODO: fix this for QM_CUDA
_write_weight_to_file(os.path.join(output_path, file_path), qs, d, m, zp, is_cuda)
os.system(f"cp {os.path.join(file_path, 'bias.bin')} {os.path.join(output_path, file_path, 'bias.bin')}")
# cp attn/qk_bmm
dir_path = f"{prefix}/decoder/layer{idx}/attn/qk_bmm"
_rm_and_cp_dir_if_exist(dir_path, os.path.join(output_path, dir_path))
print(f"Quantization of layer {idx} finished.")
print(f"All the weights of {model_name_size} has been quantized with {method} method.")
# Test function
def _test():
print("Test function starts.")
prefix = "models/LLaMA_7B"
method = "Q4_0"
data_type = "fp32"
# Check model name
model_name_size = prefix.rsplit("/", maxsplit=1)[-1]
if model_name_size not in ["OPT_125m", "OPT_1.3B", "OPT_6.7B", "LLaMA_7B"]:
raise ValueError("Invalid model name. Expected 'OPT_125m', 'OPT_1.3B', 'OPT_6.7B', or 'LLaMA_7B'.")
# Check quantization method
if method not in quantization_funcs:
raise ValueError(f"Invalid quantization method. Expected one of {quantization_funcs.keys()}")
quantize_method = quantization_funcs[method]
# Check data type
if data_type == "fp32":
bytes_per_element = 4
elif data_type == "fp16":
bytes_per_element = 2
elif data_type == "int8":
bytes_per_element = 1
else:
raise ValueError("Invalid data type. Expected 'fp32', 'fp16', or 'int8'.")
# Quantize down_proj in layer 0
file_path = f"{prefix}"
weight_path = f"{prefix}/lm_head.bin"
file_size_bytes = os.path.getsize(weight_path)
if file_size_bytes % bytes_per_element != 0:
raise ValueError(f"Invalid file size of {weight_path}. Expected multiple of element number.")
array_size = file_size_bytes // bytes_per_element
print(f"Quantizing '{weight_path}' with {method} method... (original data type: {data_type})")
qs, d, m, zp = quantize_method(weight_path, array_size, data_type)
file_path += "/lm_head"
_write_weight_to_file(file_path, qs, d, m, zp)
read_qs, read_d, read_m, read_zp = _read_weight_from_file(file_path)
# Check weights
# first_half_qs = np.bitwise_and(qs, 0x0F)
# second_half_qs = np.bitwise_and(qs, 0xF0) >> 4
# first_half_read_qs = np.bitwise_and(np.frombuffer(read_qs, dtype=np.int8), 0x0F)
# second_half_read_qs = np.bitwise_and(np.frombuffer(read_qs, dtype=np.int8), 0xF0) >> 4
# print(f"first_half_qs: {first_half_qs[0:2, :16]}")
# print(f"first_half_read_qs: {first_half_read_qs[:32]}")
# print(f"second_half_qs: {second_half_qs[0:2, :16]}")
# print(f"second_half_read_qs: {second_half_read_qs[:32]}")
# print(f"shalen of qs: {qs.shape}")
# print(f"length of first_half_qs: {len(first_half_qs)}")
# print(f"length of second_half_qs: {len(second_half_qs)}")
# print(f"length of first_half_read_qs: {len(first_half_read_qs)}")
# print(f"length of second_half_read_qs: {len(second_half_read_qs)}")
# Check weights
qs = np.frombuffer(qs, dtype=np.uint8)
qs = np.array(qs, dtype=np.int32)
print(f"qs: {qs.flatten()[:32]}")
print(f"length of qs: {len(qs)}")
read_qs = np.frombuffer(read_qs, dtype=np.uint8)
read_qs = np.array(read_qs, dtype=np.int32)
print(f"read_qs: {read_qs[:32]}")
print(f"length of read_qs: {len(read_qs)}")
# Check scaling factors
if STORE_FP16:
read_d = np.frombuffer(read_d, dtype=np.float16)
else:
read_d = np.frombuffer(read_d, dtype=np.float32)
print(f"d: {d}")
print(f"read_d: {read_d}")
print(f"length of d: {len(d)}")
# Check offsets
if STORE_FP16:
read_m = np.frombuffer(read_m, dtype=np.float16)
else:
read_m = np.frombuffer(read_m, dtype=np.float32)
print(f"m: {m}")
print(f"read_m: {read_m}")
print(f"length of m: {len(m)}")
# Check zero points
if STORE_FP16:
read_zp = np.frombuffer(read_zp, dtype=np.float16)
else:
read_zp = np.frombuffer(read_zp, dtype=np.float32)
print(f"zp: {zp}")
print(f"read_zp: {read_zp}")
# Main function
def main():
"""Take arguments and quantize the model."""
def _get_parser():
parser = argparse.ArgumentParser(description="Quantize model")
parser.add_argument("--model_path", type=str, default="models/LLaMA_7B", help="Model path")
parser.add_argument("--method", type=str, default="QM_ARM", help="Quantization method")
parser.add_argument("--data_type", type=str, default="fp32", help="Data type")
parser.add_argument("--output_path", type=str, default=None, help="Quantization method")
return parser
parser = _get_parser()
args = parser.parse_args()
if args.output_path:
output_path = args.output_path
else:
output_path = "INT4"
print(f"output_path not defined, using {output_path} by default.")
_quantize_model(
prefix=args.model_path,
method=args.method,
output_path=output_path,
data_type=args.data_type,
is_cuda=args.method == "QM_CUDA",
)
if __name__ == "__main__":
main()