-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain_retrieval_task_specific.py
192 lines (161 loc) · 6.57 KB
/
main_retrieval_task_specific.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from utils.lib import *
from utils.args import get_args
from utils.logger import LOGGER, add_log_to_file
from dataset import Dataset_Base, get_tsv_dls
from utils.dist import (
is_main_process,
get_rank, get_world_size, iter_tqdm,
NoOp)
from model import LAVENDER_Base
from agent import Agent_Base, NormSoftmaxLoss
class Dataset_Retrieval_TS(Dataset_Base):
def __init__(self, args, img_tsv_path, txt, id2lineidx, split, tokzr):
super().__init__(
args, split, size_frame=args.size_frame, tokzr=tokzr)
self.txt = txt[split]
self.img_tsv_path = img_tsv_path
self.id2lineidx = id2lineidx
if args.data_ratio != 1:
self.get_partial_data()
self.vid2txt = defaultdict(list)
for item in self.txt:
self.vid2txt[item["video"]].append(item)
if self.split != "train" and len(self.txt) > len(self.vid2txt):
# use just one caption during evaluation
first_txt = []
for vid, list_of_items in self.vid2txt.items():
first_txt.append(list_of_items[0])
self.txt = first_txt
def __len__(self):
return len(self.txt)
def __getitem__(self, idx):
item = self.txt[idx]
video_id = item['video']
lineidx = self.id2lineidx[video_id]
b = self.seek_img_tsv(lineidx)[2:]
img = self.get_img_or_video(b)
raw_txt = item['caption']
if isinstance(raw_txt, list):
# random text augmentation from Frozen
sent_ids = range(len(raw_txt))
if self.split == "train":
size_sent = random.randint(1, len(raw_txt))
sent_ids = random.sample(sent_ids, size_sent)
raw_txt = " ".join([raw_txt[i] for i in sent_ids])
txt, mask = self.str2txt(raw_txt)
return img, txt, mask, video_id
def collate_batch(self, inputs):
img, txt, mask, video_id = map(list, unzip(inputs))
all_imgs = T.stack(img, dim=0)
all_txts = T.stack(txt, dim=0)
all_masks = T.stack(mask, dim=0)
batch = {
"img": all_imgs, "txt": all_txts,
"mask": all_masks, "vid": video_id}
return batch
class LAVENDER_Retrieval_TS(LAVENDER_Base):
def __init__(self, args, tokzr=None):
super().__init__(args, tokzr)
self.fc = T.nn.Sequential(*[
T.nn.Dropout(0.1),
T.nn.Linear(self.hidden_size, self.hidden_size*2),
T.nn.ReLU(inplace=True),
T.nn.Linear(self.hidden_size*2, 1)])
def forward(self, batch):
img, txt, mask = [
batch[key] for key in ["img", "txt", "mask"]]
(_B, _T, _, _H, _W), (_, _X) = img.shape, txt.shape
_h, _w = _H//32, _W//32
feat_img, mask_img, feat_txt, mask_txt = self.go_feat(img, txt, mask)
pdt_feat_img, pdt_mask_img, pdt_feat_txt, pdt_mask_txt = [], [], [], []
for i in range(_B):
for j in range(_B):
pdt_feat_img.append(feat_img[i].unsqueeze(0))
pdt_mask_img.append(mask_img[i].unsqueeze(0))
pdt_feat_txt.append(feat_txt[j].unsqueeze(0))
pdt_mask_txt.append(mask_txt[j].unsqueeze(0))
pdt_feat_img, pdt_mask_img, pdt_feat_txt, pdt_mask_txt = [
T.cat(x, dim=0)
for x in [pdt_feat_img, pdt_mask_img,
pdt_feat_txt, pdt_mask_txt]
]
out, _ = self.go_cross(
pdt_feat_img, pdt_mask_img, pdt_feat_txt, pdt_mask_txt)
out = self.fc(out[:, (1+_h*_w)*_T, :]).squeeze().view(
[_B, _B]) # / 0.05
ans = T.tensor([i for i in range(_B)]).long().cuda()
return out, ans
class Agent_Retrieval_TS(Agent_Base):
def __init__(self, args, model):
super().__init__(args, model)
self.loss_func = NormSoftmaxLoss(
temperature=args.temp).cuda()
self.log = {'ls_tr': [], 'ac_vl': [], 'ac_ts': []}
def step(self, batch, is_train):
with T.cuda.amp.autocast(enabled=not self.args.deepspeed):
out = self.forward_step(batch)
out, ans = out
ls = self.loss_func(out)
if is_train:
self.backward_step(ls)
return ls.item()
else:
out = T.argmax(out, dim=1)
ac = (out == ans).float().mean().item()
return ac
def go_dl(self, ep, dl, is_train):
if is_train:
self.model.train()
else:
self.model.eval()
ret = []
idx = 0
for idx, batch in enumerate(dl):
if idx % self.args.logging_steps == 0 and is_train:
LOGGER.info(self.log_memory(ep, idx+1))
batch = self.prepare_batch(batch)
curr_ret = self.step(batch, is_train)
ret.append(curr_ret)
if idx % self.args.logging_steps != 0 and is_train:
LOGGER.info(self.log_memory(ep, idx+1))
ret = float(float(np.average(ret)))
if self.args.distributed:
ret = self.reduce_mean(ret)
return ret
if __name__ == '__main__':
args = get_args()
tokzr = transformers.AutoTokenizer.from_pretrained(args.tokenizer)
dl_tr, dl_vl, dl_ts = get_tsv_dls(args, Dataset_Retrieval_TS, tokzr=tokzr)
args.max_iter = len(dl_tr) * args.size_epoch
model = LAVENDER_Retrieval_TS(args, tokzr=tokzr)
model.load_ckpt(args.path_ckpt)
model.cuda()
if args.distributed:
LOGGER.info(f"n_gpu: {args.num_gpus}, rank: {get_rank()},"
f" world_size: {get_world_size()}")
args.path_output = '%s/_%s_%s' % (
args.path_output, args.task,
datetime.now().strftime('%Y%m%d%H%M%S'))
agent = Agent_Retrieval_TS(args, model)
if args.distributed:
agent.prepare_dist_model()
agent.save_training_meta()
if is_main_process():
add_log_to_file('%s/stdout.txt' % (args.path_output))
else:
LOGGER = NoOp()
# DIST.barrier()
LOGGER.info("Saved training meta infomation, start training ...")
for e in iter_tqdm(range(args.size_epoch)):
ls_tr = agent.go_dl(e+1, dl_tr, True)
ac_vl = agent.go_dl(e+1, dl_vl, False)
ac_ts = agent.go_dl(e+1, dl_ts, False)
agent.log['ls_tr'].append(ls_tr)
agent.log['ac_vl'].append(ac_vl)
agent.log['ac_ts'].append(ac_ts)
agent.save_model(e+1)
LOGGER.info('Ep %d: %.6f %.6f %.6f' % (
e+1, ls_tr, ac_vl, ac_ts))
best_vl, best_ts = agent.best_epoch()
LOGGER.info(f'Best val @ ep {best_vl[0]+1}, {best_vl[1]:.6f}')
LOGGER.info(f'Best test @ ep {best_ts[0]+1}, {best_ts[1]:.6f}')