-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathregression_test.py
399 lines (312 loc) · 14.1 KB
/
regression_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# regression_test.py - Testing JAGS fits of HDDM models with participant-level regressors in JAGS using pyjags in Python 3
#
# Copyright (C) 2020 Michael D. Nunez, <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Record of Revisions
#
# Date Programmers Descriptions of Change
# ==== ================ ======================
# 06/29/20 Michael Nunez Original code
# 06/30/20 Michael Nunez Fix regression simulation
# 07/06/20 Michael Nunez Add summary function for parameter estimates
# 12/04/20 Michael Nunez Call definitions from pyhddmjagsutils.py
# 01/08/22 Michael Nunez Change np.int() to int() based on new Deprication warning
# Modules
import numpy as np
import numpy.matlib
import pyjags
import scipy.io as sio
from scipy import stats
import warnings
import os
import matplotlib.pyplot as plt
import pyhddmjagsutils as phju
### Simulations ###
# Generate samples from the joint-model of reaction time and choice
#Note you could remove this if statement and replace with loading your own data to dictionary "gendata"
if not os.path.exists('data/genparam_test3.mat'):
# Number of simulated participants
nparts = 40
# Number of conditions
nconds = 6
# Number of trials per participant and condition
ntrials = 50
# Number of total trials in each simulation
N = ntrials*nparts*nconds
# Set random seed
np.random.seed(2021)
#Intercepts of linear regressions
ndt_int = np.matlib.repmat(np.random.uniform(.4, .7, size=(1,nconds)),nparts,1) # Uniform from .4 to .7 seconds
alpha_int = np.matlib.repmat(np.random.uniform(.8, 1.4, size=(1,nconds)),nparts,1) # Uniform from .8 to 1.4 evidence units
delta_int = np.matlib.repmat(np.random.uniform(-2, 2, size=(1, nconds)),nparts,1) # Uniform from -2 to 2 evidence units per second
#Slopes of linear regressions
ndt_gamma = np.matlib.repmat(np.random.uniform(0, .1, size=(1,nconds)),nparts,1)
alpha_gamma = np.matlib.repmat(np.random.uniform(-.1, .1, size=(1,nconds)),nparts,1)
delta_gamma = np.matlib.repmat(np.random.uniform(-1, 1, size=(1,nconds)),nparts,1)
#Regressors
regressors1 = np.random.normal(size=(nparts,nconds)) #The same regressors for each parameter, from a standard normal distribution
#True parameters
ndt = ndt_int + ndt_gamma*regressors1
alpha = alpha_int + alpha_gamma*regressors1
delta = delta_int + delta_gamma*regressors1
ndttrialrange = np.random.uniform(0,.1, size=(nparts)) # Uniform from 0 to .1 seconds
deltatrialsd = np.random.uniform(0, 2, size=(nparts)) # Uniform from 0 to 2 evidence units per second
prob_lapse = np.random.uniform(0, 10, size=(nparts)) # From 0 to 10 percent of trials
y = np.zeros((N))
rt = np.zeros((N))
acc = np.zeros((N))
participant = np.zeros((N)) #Participant index
condition = np.zeros((N)) #Condition index
indextrack = np.arange(ntrials)
for p in range(nparts):
for k in range(nconds):
tempout = phju.simulratcliff(N=ntrials, Alpha= alpha[p,k], Tau= ndt[p,k],
Nu= delta[p,k], Eta= deltatrialsd[p], rangeTau=ndttrialrange[p])
tempx = np.sign(np.real(tempout))
tempt = np.abs(np.real(tempout))
mindwanderx = np.random.randint(low=0,high=2,size=ntrials)*2 -1
mindwandert = np.random.uniform(low=0,high=2,size=ntrials) # Randomly distributed from 0 to 2 seconds
mindwander_trials = np.random.choice(ntrials, size=int(np.round(ntrials*(prob_lapse[p]/100))), replace=False)
tempx[mindwander_trials] = mindwanderx[mindwander_trials]
tempt[mindwander_trials] = mindwandert[mindwander_trials]
y[indextrack] = tempx*tempt
rt[indextrack] = tempt
acc[indextrack] = (tempx + 1)/2
participant[indextrack] = p+1
condition[indextrack] = k+1
indextrack += ntrials
genparam = dict()
genparam['ndt'] = ndt
genparam['alpha'] = alpha
genparam['delta'] = delta
genparam['ndt_int'] = ndt_int
genparam['alpha_int'] = alpha_int
genparam['delta_int'] = delta_int
genparam['ndt_gamma'] = ndt_gamma
genparam['alpha_gamma'] = alpha_gamma
genparam['delta_gamma'] = delta_gamma
genparam['regressors1'] = regressors1
genparam['ndttrialrange'] = ndttrialrange
genparam['deltatrialsd'] = deltatrialsd
genparam['prob_lapse'] = prob_lapse
genparam['rt'] = rt
genparam['acc'] = acc
genparam['y'] = y
genparam['participant'] = participant
genparam['condition'] = condition
genparam['nparts'] = nparts
genparam['nconds'] = nconds
genparam['ntrials'] = ntrials
genparam['N'] = N
sio.savemat('data/genparam_test3.mat', genparam)
else:
genparam = sio.loadmat('data/genparam_test3.mat')
#Fit model to data
y = np.squeeze(genparam['y'])
rt = np.squeeze(genparam['rt'])
participant = np.squeeze(genparam['participant'])
condition = np.squeeze(genparam['condition'])
nparts = np.squeeze(genparam['nparts'])
nconds = np.squeeze(genparam['nconds'])
regressors1 = np.squeeze(genparam['regressors1'])
ntrials = np.squeeze(genparam['ntrials'])
N = np.squeeze(genparam['N'])
minrt = np.zeros((nparts,nconds))
for p in range(0,nparts):
for c in range(0,nconds):
minrt[p,c] = np.min(rt[((participant == (p+1)) & (condition == (c+1)))])
# Set random seed
np.random.seed(2021)
# Input for mixture modeling
Ones = np.ones(N)
Constant = 20
#JAGS code
tojags = '''
model {
##########
#Between-condition variability priors
##########
#Between-condition variability in drift rate to correct
deltasdcond ~ dgamma(1,1)
#Between-condition variability in non-decision time
ndtsdcond ~ dgamma(.3,1)
#Between-condition variability in speed-accuracy trade-off
alphasdcond ~ dgamma(1,1)
##########
#Between-participant variability priors
##########
#Between-participant variability in lapse trial probability
problapsesd ~ dgamma(.3,1)
##########
#Hierarchical DDM parameter priors
##########
#Hierarchical lapse trial probability
problapsehier ~ dnorm(.3, pow(.15,-2))
##########
#Condition-level DDM parameter priors
##########
for (c in 1:nconds) {
#Drift rate intercept
delta_int[c] ~ dnorm(0, pow(6, -2))
#Non-decision time intercept
ndt_int[c] ~ dnorm(0, pow(2,-2))
#Boundary parameter intercept
alpha_int[c] ~ dnorm(0, pow(4,-2))
#Effect of regressor1 on Drift rate
delta_gamma[c] ~ dnorm(0, pow(3, -2))
#Effect of regressor1 on Non-decision time
ndt_gamma[c] ~ dnorm(0, pow(1,-2))
#Effect of regressor1 on boundary parameter
alpha_gamma[c] ~ dnorm(0, pow(2,-2))
}
##########
#Participant-level DDM parameter priors
##########
for (p in 1:nparts) {
#Probability of a lapse trial
problapse[p] ~ dnorm(problapsehier, pow(problapsesd,-2))T(0, 1)
probDDM[p] <- 1 - problapse[p]
for (c in 1:nconds) {
#Participant-level drift rate to correct
delta[p,c] ~ dnorm(delta_int[c] + delta_gamma[c]*regressors1[p,c], pow(deltasdcond, -2))
#Non-decision time
ndt[p,c] ~ dnorm(ndt_int[c] + ndt_gamma[c]*regressors1[p,c], pow(ndtsdcond,-2))T(0, 1)
#Boundary parameter (speed-accuracy tradeoff)
alpha[p,c] ~ dnorm(alpha_int[c] + alpha_gamma[c]*regressors1[p,c], pow(alphasdcond,-2))T(0, 3)
}
}
##########
# Wiener likelihood and uniform mixture using Ones trick
for (i in 1:N) {
# Log density for DDM process of rightward/leftward RT
ld_comp[i, 1] <- dlogwiener(y[i], alpha[participant[i],condition[i]], ndt[participant[i],condition[i]], .5, delta[participant[i],condition[i]])
# Log density for lapse trials (negative max RT to positive max RT)
ld_comp[i, 2] <- logdensity.unif(y[i], -3, 3)
# Select one of these two densities (Mixture of nonlapse and lapse trials)
selected_density[i] <- exp(ld_comp[i, DDMorLapse[i]] - Constant)
# Generate a likelihood for the MCMC sampler using a trick to maximize density value
Ones[i] ~ dbern(selected_density[i])
# Probability of mind wandering trials (lapse trials)
DDMorLapse[i] ~ dcat( c(probDDM[participant[i]], problapse[participant[i]]) )
}
}
'''
# pyjags code
# Make sure $LD_LIBRARY_PATH sees /usr/local/lib
# Make sure that the correct JAGS/modules-4/ folder contains wiener.so and wiener.la
pyjags.modules.load_module('wiener')
pyjags.modules.load_module('dic')
pyjags.modules.list_modules()
nchains = 6
burnin = 4000 # Note that scientific notation breaks pyjags
nsamps = 20000
modelfile = 'jagscode/regression_test3.jags'
f = open(modelfile, 'w')
f.write(tojags)
f.close()
# Track these variables
trackvars = ['deltasdcond', 'ndtsdcond', 'alphasdcond', 'problapsesd',
'problapsehier', 'delta_int', 'ndt_int', 'alpha_int',
'delta_gamma', 'ndt_gamma', 'alpha_gamma',
'delta', 'ndt', 'alpha', 'problapse', 'DDMorLapse']
initials = []
for c in range(0, nchains):
chaininit = {
'deltasdcond': np.random.uniform(.1, 3.),
'ndtsdcond': np.random.uniform(.01, .2),
'alphasdcond': np.random.uniform(.01, 1.),
'problapsesd': np.random.uniform(.01, .5),
'problapsehier': np.random.uniform(.01, .1),
'delta_int': np.random.uniform(-4., 4., size=nconds),
'ndt_int': np.random.uniform(.1, .5, size=nconds),
'alpha_int': np.random.uniform(.5, 2., size=nconds),
'delta_gamma': np.random.uniform(-1., 1., size=nconds),
'ndt_gamma': np.random.uniform(-.1, .1, size=nconds),
'alpha_gamma': np.random.uniform(-.1, .1, size=nconds),
'delta': np.random.uniform(-4., 4., size=(nparts,nconds)),
'ndt': np.random.uniform(.1, .5, size=(nparts,nconds)),
'alpha': np.random.uniform(.5, 2., size=(nparts,nconds)),
'problapse': np.random.uniform(.01, .1, size=nparts)
}
for p in range(0, nparts):
for c in range(0, nconds):
chaininit['ndt'][p,c] = np.random.uniform(0., minrt[p,c]/2)
initials.append(chaininit)
print('Fitting model 3 ...')
threaded = pyjags.Model(file=modelfile, init=initials,
data=dict(y=y, N=N, regressors1=regressors1, nparts=nparts, nconds=nconds, condition=condition,
participant=participant, Ones=Ones, Constant=Constant),
chains=nchains, adapt=burnin, threads=6,
progress_bar=True)
samples = threaded.sample(nsamps, vars=trackvars, thin=10)
savestring = ('modelfits/genparam_test1_model3.mat')
print('Saving results to: \n %s' % savestring)
sio.savemat(savestring, samples)
#Diagnostics
samples = sio.loadmat(savestring)
samples_diagrelevant = samples.copy()
samples_diagrelevant.pop('DDMorLapse', None) #Remove variable DDMorLapse to obtain Rhat diagnostics
diags = phju.diagnostic(samples_diagrelevant)
#Posterior distributions
plt.figure()
phju.jellyfish(samples['delta'])
plt.title('Posterior distributions of the drift-rate')
plt.savefig(('figures/delta_posteriors_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.jellyfish(samples['ndt'])
plt.title('Posterior distributions of the non-decision time parameter')
plt.savefig(('figures/ndt_posteriors_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.jellyfish(samples['alpha'])
plt.title('Posterior distributions of boundary parameter')
plt.savefig(('figures/alpha_posteriors_model3.png'), format='png',bbox_inches="tight")
#Recovery
plt.figure()
phju.recovery(samples['delta'],genparam['delta'][:, :])
plt.title('Recovery of the drift-rate')
plt.savefig(('figures/delta_recovery_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['ndt'],genparam['ndt'])
plt.title('Recovery of the non-decision time parameter')
plt.savefig(('figures/ndt_recovery_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['alpha'],genparam['alpha'])
plt.title('Recovery of boundary parameter')
plt.savefig(('figures/alpha_recovery_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['delta_int'],genparam['delta_int'][0,:])
plt.title('Recovery of the drift-rate intercept')
plt.savefig(('figures/delta_int_recovery_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['ndt_int'],genparam['ndt_int'][0,:])
plt.title('Recovery of the non-decision time intercept')
plt.savefig(('figures/ndt_int_recovery_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['alpha_int'],genparam['alpha_int'][0,:])
plt.title('Recovery of boundary parameter intercept')
plt.savefig(('figures/alpha_int_recovery_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['delta_gamma'],genparam['delta_gamma'][0,:])
plt.title('Recovery of the drift-rate slope')
plt.savefig(('figures/delta_gamma_recovery_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['ndt_gamma'],genparam['ndt_gamma'][0,:])
plt.title('Recovery of the non-decision time slope')
plt.savefig(('figures/ndt_gamma_recovery_model3.png'), format='png',bbox_inches="tight")
plt.figure()
phju.recovery(samples['alpha_gamma'],genparam['alpha_gamma'][0,:])
plt.title('Recovery of boundary parameter slope')
plt.savefig(('figures/alpha_gamma_recovery_model3.png'), format='png',bbox_inches="tight")