-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinference_outpainting-dir.py
393 lines (336 loc) · 18 KB
/
inference_outpainting-dir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import os
import math
import random
import logging
import inspect
import argparse
import datetime
import subprocess
from pathlib import Path
from tqdm.auto import tqdm
from einops import rearrange
from omegaconf import OmegaConf
from safetensors import safe_open
from typing import Dict, Optional, Tuple
from decord import VideoReader
import torchvision.transforms as transforms
import torch
from PIL import Image
import pdb
import torchvision
import torch.nn.functional as F
import torch.distributed as dist
from torch.optim.swa_utils import AveragedModel
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, DDPMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPImageProcessor
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation_inference import AnimationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
from animatediff.utils.util import save_videos_grid, zero_rank_print, save_list_to_txt
import numpy as np
from accelerate.utils import set_seed
import copy
import PIL
from matplotlib import pyplot as plt
from animatediff.utils.video_mask import video_mask, get_anchor_target
import cv2
from tensorboardX import SummaryWriter
def get_canvas_size(input_size, target_size, min_overlap, window_size):
"""Get canvas size and round number for outpainting. Currently only surppot 1 or two rounds."""
use_multi_diff = True
if target_size[0] <= window_size[0] and target_size[1] <= window_size[1]:
use_multi_diff = False
if target_size[0] < input_size[0] or target_size[1] < input_size[1]:
print('target size is smaller than input size!')
return None, use_multi_diff
if target_size[0] < input_size[0] + window_size[0] - min_overlap[0] and target_size[1] < input_size[1] + window_size[1] - min_overlap[1]:
print('outpaint one time.')
return [target_size], use_multi_diff
num_round_h = int(np.ceil(((target_size[0] - input_size[0])/2)/(window_size[0] - min_overlap[0])))
num_round_w = int(np.ceil(((target_size[1] - input_size[1])/2)/(window_size[1] - min_overlap[1])))
num_round = max(num_round_h, num_round_w)
canvas_size = []
for i in range(num_round-1):
canvas_size_i = [input_size[0] + (i+1) * int((target_size[0] - input_size[0])/num_round), input_size[1] + (i+1) * int((target_size[1] - input_size[1])/num_round)]
canvas_size_i = [int(canvas_size_i[0]//8*8), int(canvas_size_i[1]//8*8)]
canvas_size.append(canvas_size_i)
canvas_size.append(target_size)
return canvas_size, use_multi_diff
def get_prompt(frame, lmm_tokenizer, lmm_model):
path = 'infer/temp.jpg'
frame = cv2.cvtColor((frame.numpy().transpose(1,2,0)+1)/2*255, cv2.COLOR_RGB2BGR)
cv2.imwrite(path, frame)
lmm_prompt = "Describe the foreground and possible background of the image content in two sentences. Answer starts with 'The image shows'."
query = lmm_tokenizer.from_list_format([{'image': path},{'text': lmm_prompt}])
prompt, _ = lmm_model.chat(lmm_tokenizer, query=query, history=None)
prompt = prompt.replace('The image shows', '').strip()
print(f'=> Get new prompt: {prompt}')
return prompt
def main(
name: str,
output_dir: str,
pretrained_model_path: str,
validation_data: Dict,
motion_pretrained_model_path: str = "",
unet_additional_kwargs: Dict = {},
noise_scheduler_kwargs = None,
enable_xformers_memory_efficient_attention: bool = True,
global_seed: int = 42,
use_ip_plus_cross_attention: bool=False,
image_pretrained_model_path: str="",
use_fps_condition: bool=False,
use_outpaint=False,
anchor_target_sampling=None,
ip_plus_condition = 'image',
image_encoder_name = 'CLIP',
target_size = [1080, 1920],
min_overlap = [256, 64],
lmm_path = '',
start_index = 0,
validate_overlap = None,
overlap_only = False,
video_dir = None,
):
check_min_version("0.10.0.dev0")
# Initialize distributed training
device = 'cuda'
if global_seed < 0:
global_seed = random.randint(1, 1000000)
seed = global_seed
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
folder_name = name + datetime.datetime.now().strftime("-%Y-%m-%d-%H-%M-%S")
output_dir = os.path.join(output_dir, folder_name)
if os.path.exists(output_dir):
os.system(f"rm -rf {output_dir}")
*_, config = inspect.getargvalues(inspect.currentframe())
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Handle the output folder creation
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# Load scheduler, tokenizer and models.
image_encoder=None
if use_ip_plus_cross_attention:
if image_encoder_name == 'SAM':
from segment_anything import SamPredictor, sam_model_registry
image_encoder = sam_model_registry["vit_b"](checkpoint=image_pretrained_model_path)
image_encoder.requires_grad_(False)
image_encoder.to(device)
else:
raise ValueError
print(f'load image encoder: {image_pretrained_model_path}')
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
lmm_tokenizer = AutoTokenizer.from_pretrained(lmm_path, trust_remote_code=True)
lmm_model = AutoModelForCausalLM.from_pretrained(lmm_path, device_map="cuda", trust_remote_code=True, torch_dtype=torch.float32).eval()
unet = UNet3DConditionModel.from_pretrained_2d(
pretrained_model_path, subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs)
)
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
noise_scheduler_train = DDPMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
if motion_pretrained_model_path!="":
logging.info(f"from motion pretreained checkpoint: {motion_pretrained_model_path}")
# motion model keys: 'epoch', 'global_step', 'state_dict'
motion_pretrained_model_path = torch.load(motion_pretrained_model_path, map_location="cpu")
if "global_step" in motion_pretrained_model_path: zero_rank_print(f"global_step: {motion_pretrained_model_path['global_step']}")
state_dict = motion_pretrained_model_path["state_dict"] if "state_dict" in motion_pretrained_model_path else motion_pretrained_model_path
new_state_dict = {}
for k, v in state_dict.items():
new_state_dict[k.replace('module.', '')] = v
m, u = unet.load_state_dict(new_state_dict, strict=False)
logging.info(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
logging.info(f"missing keys: {m}, \n unexpected keys: {u}")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
# Set unet trainable parameters
# Enable xformers
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Move models to GPU
vae.to(device)
text_encoder.to(device)
# Get the dataset
logging.info("***** Loading Data *****")
# Validation pipeline
validation_pipeline = AnimationPipeline(
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler, image_encoder=image_encoder, image_encoder_name=image_encoder_name
).to("cuda")
validation_pipeline.enable_vae_slicing()
pixel_transforms = transforms.Compose([transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)])
# DDP warpper
unet.to(device)
video_paths = os.listdir(video_dir)
re = 0
for video_name in video_paths[start_index:]:
generator = torch.Generator(device=device)
# get different seed for each validation round
generator.manual_seed(global_seed+re)
(height_tile, width_tile) = anchor_target_sampling.target_size
print(f'multi diff window size: {width_tile}, {height_tile} ')
# video_batch_val = val_dataset[start_index + index]
video_batch_val = {}
video_batch_val['videoid'] = video_name
video_batch_val["fps"] = 8
video_reader = VideoReader(os.path.join(video_dir, video_name))
framelst = [i for i in range(len(video_reader))] if len(video_reader)< 64 else [i for i in range(64)]
if len(framelst) < 64:
last = framelst[-1]
framelst.extend([last for _ in range(64-len(framelst))])
frames = video_reader.get_batch(framelst)
video_batch_val["pixel_values"] = pixel_transforms(torch.from_numpy(frames.asnumpy().transpose(0,3,1,2)) / 255.)
video_batch_val['video_length'] = len(video_reader)
prompts = None
# -----------------------------------------------------------------
pixel_values_valid = video_batch_val['pixel_values'].unsqueeze(0)
video_length = video_batch_val['video_length']
videoid = video_batch_val['videoid']
if 'pixel_pad' in video_batch_val.keys():
pixel_pad = video_batch_val['pixel_pad']
else:
pixel_pad = None
_, _, _, height, width = pixel_values_valid.shape
n_frames = pixel_values_valid.shape[1]
fps_tensor = torch.tensor(video_batch_val["fps"]).to(device).unsqueeze(0)
# negative_prompt = "noisy, low resolution, low quality, blurry, watermark, ugly, nude"
negative_prompt = ""
canvas_sizes, use_multi_diff = get_canvas_size([height, width], target_size, min_overlap, [width_tile, height_tile])
prompts = get_prompt(pixel_values_valid[0, video_length//2,:,:,:], lmm_tokenizer, lmm_model)
for outpainting_round in range(len(canvas_sizes)):
print(f"outpainting round {outpainting_round}")
outpaint_size = canvas_sizes[outpainting_round]
# -----------------------------------------------------------------
with torch.no_grad():
videos = validation_pipeline(
prompts,
videos=pixel_values_valid,
use_outpaint=use_outpaint,
pixel_pad=pixel_pad,
generator = generator,
video_length = n_frames,
height = outpaint_size[0],
width = outpaint_size[1],
use_ip_plus_cross_attention = use_ip_plus_cross_attention,
ip_plus_condition = ip_plus_condition,
use_fps_condition=use_fps_condition,
fps_tensor=fps_tensor,
negative_prompt=negative_prompt,
multi_diff_window = [width_tile, height_tile] if validation_data.multi_diff and use_multi_diff else None,
validate_overlap = None if outpainting_round>0 or not use_multi_diff else validate_overlap,
overlap_only = overlap_only,
round=outpainting_round,
lmm_tokenizer=lmm_tokenizer,
lmm_model=lmm_model,
**validation_data,
).videos
if use_outpaint:
[videos, videos_masekd, videos_original, video_split, videos_overlap, videos_replace, video_smooth] = videos
if videos is not None:
for sidx, sample in enumerate(videos):
if sidx > 0: break
print (f'{sidx}-{prompts[sidx]}')
if video_split is not None:
videos_original = rearrange(videos_original, "b t c h w -> b c t h w")
videos_masekd = rearrange(videos_masekd, "b t c h w -> b c t h w")
pixel_values_valid = rearrange(videos*2-1, "b c f h w -> b f c h w")
sub_samples = []
sub_samples.append(video_split.cpu()[sidx].unsqueeze(0))
sample_num = len(sub_samples)
sub_samples = torch.concat(sub_samples)
save_path = f"{output_dir}/samples{video_name}-fps-{fps_tensor[sidx]}-{prompts[:10].replace('/', ' ')}-{n_frames}f-{outpainting_round}{re}.gif"
save_dir = os.path.dirname(save_path)
try:
os.makedirs(save_dir, exist_ok=True)
save_videos_grid(sub_samples, save_path[:-4] + '.mp4', n_rows=sample_num, n_frames=video_length)
except:
print('\n\n=> no space on device!\n\n')
try:
os.makedirs(save_dir, exist_ok=True)
save_videos_grid(sub_samples, save_path[:-4] + '.mp4', n_rows=sample_num, n_frames=video_length)
except:
print('\n\n=> no space on device!\n\n')
if videos is not None:
sub_samples = []
for video in videos:
sub_samples.append(video.cpu().unsqueeze(0))
sample_num = len(sub_samples)
sub_samples = torch.concat(sub_samples)
save_path = f"{output_dir}/original{video_name}-fps-{fps_tensor[sidx]}-{prompts[:10].replace('/', ' ')}-{n_frames}f-{outpainting_round}{re}.gif"
save_dir = os.path.dirname(save_path)
try:
os.makedirs(save_dir, exist_ok=True)
save_videos_grid(sub_samples, save_path[:-4] + '.mp4', n_rows=sample_num, n_frames=video_length)
except:
print('\n\n=> no space on device!\n\n')
if videos_replace is not None:
sub_samples = []
for video_replace in videos_replace:
sub_samples.append(video_replace.cpu().unsqueeze(0))
sample_num = len(sub_samples)
sub_samples = torch.concat(sub_samples)
save_path = f"{output_dir}/replace{video_name}-fps-{fps_tensor[sidx]}-{prompts[:10].replace('/', ' ')}-{n_frames}f-{outpainting_round}{re}.gif"
save_dir = os.path.dirname(save_path)
try:
os.makedirs(save_dir, exist_ok=True)
save_videos_grid(sub_samples, save_path[:-4] + '.mp4', n_rows=sample_num, n_frames=video_length)
except:
print('\n\n=> no space on device!\n\n')
if video_smooth is not None:
sub_samples = []
for video_replace in video_smooth:
sub_samples.append(video_replace.cpu().unsqueeze(0))
sample_num = len(sub_samples)
sub_samples = torch.concat(sub_samples)
save_path = f"{output_dir}/smooth{video_name}-fps-{fps_tensor[sidx]}-{prompts[:10].replace('/', ' ')}-{n_frames}f-{outpainting_round}{re}.gif"
video_name = videoid.split('/')[-1]
save_path_result = f'{output_dir}/result/{video_name}'
save_dir = os.path.dirname(save_path)
try:
os.makedirs(save_dir, exist_ok=True)
save_videos_grid(sub_samples, save_path[:-4] + '.mp4', n_rows=sample_num, n_frames=video_length)
save_videos_grid(sub_samples, save_path_result, n_rows=sample_num, n_frames=video_length)
except:
print('\n\n=> no space on device!\n\n')
if videos_overlap is not None:
sub_samples = []
for video_overlap in videos_overlap:
sub_samples.append(video_overlap.cpu()[0].unsqueeze(0))
sample_num = len(sub_samples)
sub_samples = torch.concat(sub_samples)
save_path = f"{output_dir}/overlaps{video_name}-fps-{fps_tensor[0]}-{prompts[:10].replace('/', ' ')}-{n_frames}f-{outpainting_round}{re}.gif"
save_dir = os.path.dirname(save_path)
try:
os.makedirs(save_dir, exist_ok=True)
save_videos_grid(sub_samples, save_path[:-4] + '.mp4', n_rows=sample_num, n_frames=video_length)
save_videos_grid(sub_samples, save_path_result, n_rows=sample_num, n_frames=video_length)
except:
print('\n\n=> no space on device!\n\n')
logging.info(f"Saved samples to {save_path}")
torch.cuda.empty_cache()
re = re + 1
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args = parser.parse_args()
name = Path(args.config).stem
config = OmegaConf.load(args.config)
main(name=name, **config)