-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathModel.hpp
332 lines (282 loc) · 8.64 KB
/
Model.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/* MCM file compressor
Copyright (C) 2013, Google Inc.
Authors: Mathieu Chartier
LICENSE
This file is part of the MCM file compressor.
MCM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
MCM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with MCM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MODEL_HPP_
#define _MODEL_HPP_
#include "Compressor.hpp"
#include <assert.h>
#pragma warning(disable : 4146)
#pragma pack(push)
#pragma pack(1)
template <typename T, const int max>
class floatBitModel {
float f;
public:
floatBitModel() {
init();
}
void init() {
f = 0.5f;
}
inline void update(T bit, T dummy) {
f += ((float)(bit ^ 1) - f) * 0.02;
if (f < 0.001) f = 0.001;
if (f > 0.999) f = 0.999;
}
inline uint32_t getP() const {
return (uint32_t)(f * (float)max);
}
};
// Count stored in high bits
#pragma pack(push)
#pragma pack(1)
// Bit probability model (should be rather fast).
template <typename T, const uint32_t _shift, const uint32_t _learn_rate = 5, const uint32_t _bits = 15>
class safeBitModel {
protected:
static const uint32_t pmax = (1 << _bits) - 1;
public:
static const uint32_t shift = _shift;
static const uint32_t learn_rate = _learn_rate;
static const uint32_t max = 1 << shift;
inline void update(T bit) {
int round = 1 << (_learn_rate - 1);
p += ((static_cast<int>(bit) << _bits) - static_cast<int>(p) + round) >> _learn_rate;
}
inline uint32_t getP() const {
uint32_t ret = p >> (_bits - shift);
ret += ret == 0;
return ret;
}
private:
T p = pmax / 2;
};
template <const uint32_t _shift, const uint32_t _learn_rate = 5, const uint32_t _bits = 15>
class bitLearnModel {
static const uint32_t kCountBits = 8;
static const uint32_t kCountMask = (1 << kCountBits) - 1;
static const uint32_t kInitialCount = 2;
// Count is in low kCountBits.
uint32_t p;
public:
static const uint32_t shift = _shift;
static const uint32_t learn_rate = _learn_rate;
static const uint32_t max = 1 << shift;
ALWAYS_INLINE void init(int new_p = 1 << (_shift - 1)) {
setP(new_p);
}
ALWAYS_INLINE bitLearnModel() {
init();
}
ALWAYS_INLINE void update(uint32_t bit) {
const size_t count = p & kCountMask;
// 255 / 32 = 9
const size_t learn_rate = 2 + (count >> 5);
const int m[2] = { kCountMask, (1u << 31) - 1 };
p = p + (((m[bit] - static_cast<int>(p)) >> learn_rate) & ~kCountMask);
p += count < kCountMask;
}
ALWAYS_INLINE uint32_t getCount() {
return p & kCountMask;
}
ALWAYS_INLINE void setP(uint32_t new_p, uint32_t count = kInitialCount << 5) {
p = new_p << (31 - shift) | count;
}
ALWAYS_INLINE uint32_t getP() const {
int ret = p >> (31 - shift);
return ret;
}
};
// Bit probability model (should be rather fast).
template <typename T, const uint32_t _shift, const uint32_t _learn_rate = 5, const uint32_t _bits = 15>
class fastBitModel {
protected:
T p;
static const bool kUseRounding = false;
static const T pmax = (1 << _bits) - 1;
public:
static const uint32_t shift = _shift;
static const uint32_t learn_rate = _learn_rate;
static const uint32_t max = 1 << shift;
ALWAYS_INLINE void init(int new_p = 1u << (_shift - 1)) {
p = new_p << (_bits - shift);
}
ALWAYS_INLINE fastBitModel() {
init();
}
ALWAYS_INLINE void update(T bit) {
update(bit, learn_rate);
}
ALWAYS_INLINE void update(T bit, int32_t learn_rate, int32_t round = 0) {
p += ((static_cast<int>(bit) << _bits) - static_cast<int>(p) + round) >> learn_rate;
}
ALWAYS_INLINE void setP(uint32_t new_p) {
p = new_p << (_bits - shift);
}
ALWAYS_INLINE uint32_t getP() const {
return p >> (_bits - shift);
}
};
// Bit probability model (should be rather fast).
template <typename T, const uint32_t _shift, const uint32_t _learn_rate = 5>
class fastBitSTModel {
protected:
T p = 0;
public:
static const uint32_t shift = _shift;
static const uint32_t learn_rate = _learn_rate;
static const uint32_t max = 1 << shift;
template <typename Table>
inline void update(T bit, Table& table) {
return;
// Calculate err first.
int err = (static_cast<int>(bit) << shift) - table.sq(getSTP());
p += err >> 10;
const T limit = 2048 << shift; // (_bits - shift);
if (p < -limit) p = -limit;
if (p > limit) p = limit;
}
template <typename Table>
inline void setP(uint32_t new_p, Table& table) {
p = table.st(new_p) << shift;
}
// Return the stretched probability.
inline uint32_t getSTP() const {
return p + (1 << shift - 1) >> shift;
}
};
// Bit probability model (should be rather fast).
template <typename T, const uint32_t _shift, const uint32_t _learn_rate = 5, const uint32_t _bits = 15>
class fastBitSTAModel {
protected:
static const uint32_t pmax = (1 << _bits) - 1;
public:
static const uint32_t shift = _shift;
static const uint32_t learn_rate = _learn_rate;
static const uint32_t max = 1 << shift;
inline void update(T bit) {
int round = 1 << (_learn_rate - 1);
p += ((static_cast<int>(bit) << _bits) - static_cast<int>(p) + 00) >> _learn_rate;
}
inline void setP(uint32_t new_p) {
p = new_p << (_bits - shift);
}
inline int getSTP() const {
return (p >> (_bits - shift)) - 2048;
}
private:
T p = pmax / 2;
};
template <typename T, const uint32_t _shift, const uint32_t _learn_rate = 5>
class fastBitStretchedModel : public fastBitModel<T, _shift, _learn_rate> {
public:
static const uint32_t shift = _shift;
static const uint32_t learn_rate = _learn_rate;
static const uint32_t max = 1 << shift;
inline uint32_t getP() const {
return getP() - (1 << (shift - 1));
}
};
#pragma pack(pop)
// Semistationary model.
template <typename T>
class fastCountModel {
T n[2] = {};
public:
inline uint32_t getN(uint32_t i) const {
return n[i];
}
inline uint32_t getTotal() const {
return n[0] + n[1];
}
void update(uint32_t bit) {
n[bit] += n[bit] < 0xFF;
n[1 ^ bit] = n[1 ^ bit] / 2 + (n[1 ^ bit] != 0);
}
inline uint32_t getP() const {
uint32_t a = getN(0);
uint32_t b = getN(1);
if (!a && !b) return 1 << 11;
if (!a) return 0;
if (!b) return (1 << 12) - 1;
return (a << 12) / (a + b);
}
};
template <typename Predictor, const uint32_t max>
class bitContextModel {
static const uint32_t bits = _bitSize<max - 1>::value;
Predictor pred[max];
public:
void init() {
for (auto& mdl : pred) mdl.init();
}
// Returns the cost of a symbol.
template <typename CostTable>
inline uint32_t cost(const CostTable& table, uint32_t sym, uint32_t limit = max) {
assert(limit <= max);
assert(sym < limit);
uint32_t ctx = 1, total = 0;
for (uint32_t bit = bits - 1; bit != uint32_t(-1); --bit) {
if ((sym >> bit | 1) << bit < limit) {
uint32_t b = (sym >> bit) & 1;
total += table.cost(pred[ctx].getP(), b);
ctx += ctx + b;
}
}
return total;
}
template <typename TEnt, typename TStream>
inline void encode(TEnt& ent, TStream& stream, uint32_t sym, uint32_t limit = max) {
uint32_t ctx = 1;
assert(limit <= max);
assert(sym < limit);
for (uint32_t bit = bits - 1; bit != uint32_t(-1); --bit)
if ((sym >> bit | 1) << bit < limit) {
uint32_t b = (sym >> bit) & 1;
ent.encode(stream, b, pred[ctx].getP(), Predictor::shift);
pred[ctx].update(b);
ctx += ctx + b;
}
}
inline void update(uint32_t sym, uint32_t limit = max) {
uint32_t ctx = 1;
assert(limit <= max);
assert(sym < limit);
for (uint32_t bit = bits - 1; bit != uint32_t(-1); --bit)
if ((sym >> bit | 1) << bit < limit) {
uint32_t b = (sym >> bit) & 1;
pred[ctx].update(b);
ctx += ctx + b;
}
}
template <typename TEnt, typename TStream>
inline uint32_t decode(TEnt& ent, TStream& stream, uint32_t limit = max) {
uint32_t ctx = 1, sym = 0;
assert(limit <= max);
assert(sym < limit);
for (uint32_t bit = bits - 1; bit != uint32_t(-1); --bit) {
if ((sym >> bit | 1) << bit < limit) {
uint32_t b = ent.decode(stream, pred[ctx].getP(), Predictor::shift);
sym |= b << bit;
pred[ctx].update(b);
ctx += ctx + b;
}
}
return sym;
}
};
#pragma pack(pop)
#endif