-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathurban_test_generator.py
1133 lines (1055 loc) · 58.3 KB
/
urban_test_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from copy import deepcopy
from random import randint, random, choice, uniform
from numpy import asarray, clip, concatenate, arange, linspace, array, around
from scipy.interpolate import splev
from shapely import affinity
from shapely.geometry import LineString, shape, Point, MultiPoint
from termcolor import colored
from os import path
from glob import glob
from pathlib import Path
from scipy.spatial.distance import euclidean
from utils.utility_functions import convert_points_to_lines, get_angle, calc_width, \
calc_min_max_angles, get_roads_of_intersection, get_intersection_lines, get_width_lines, \
get_resize_factor_intersection, multilinestrings_to_linestring, calc_speed_waypoints
from utils.validity_checks import intersection_check_width, intersection_check_last
from utils.xml_creator import build_all_xml
from xml_converter.bng_converter import b_spline
MIN_DEGREES = 90
MAX_DEGREES = 270
OID_INDEX = 0
INTERSECTION_ID = 0
COLORS = ["White", "Red", "Green", "Yellow", "Black", "Blue", "Orange", "Gray", "Purple"]
PARTICIPANTS_SAMPLES = 45
def _add_parked_cars(roads):
"""Adds parked cars to the test case.
:param roads: List of roads. One road is a dict type, which must contain the keys "control_points"
(list of points), "type" (intersection or road), width (int).
:return: List of parked cars, color of the first car.
"""
car_positions = list()
for idx, road in enumerate(roads):
control_points = road.get("control_points")
if road.get("type") == "intersection" or control_points[0] == control_points[-1]:
continue
width = road.get("width")
rotations = [0, 45, 90] # One of three alignments.
rotation = choice(rotations)
noise = [x / 10 for x in range(-10, 10)] # Noise for rotation.
if rotation == 45:
offset = 3.5 # Offset to the road border.
min_distance = 4 # Minimum distance between two parked cars.
elif rotation == 90:
offset = 3
min_distance = 4.5
else:
offset = 2
min_distance = 5.5
right = True if random() >= 0.3 else False # Parked cars on the right side?
left = True if random() >= 0.3 else False # Parked cars on the left side?
line = LineString(control_points)
line = multilinestrings_to_linestring(line) # Shapely bugfix.
prev_road = LineString(roads[idx - 1].get("control_points")) if idx != 0 else None # Previous road.
prev_width = int(roads[idx - 1].get("width")) / 2 + offset if idx != 0 else 0
if left:
left_lines = [line.parallel_offset(width / 2 + offset + x, "left") for x in noise] # Adds noise to offset.
left_lines = [multilinestrings_to_linestring(x) for x in left_lines]
iterator = 1
while iterator < len(left_lines[0].coords):
left_line = choice(left_lines)
coords = b_spline(left_line.coords)
point = coords[iterator]
if abs(euclidean(point, coords[-1])) < 12:
# Parked cars must be at least 12 meters away from intersections.
break
if len(car_positions) == 0 or (abs(euclidean(point, car_positions[-1][0])) > min_distance and
(prev_road is None or Point(point).distance(prev_road) > prev_width)):
angle = get_angle((coords[iterator - 1][0] + 5, coords[iterator - 1][1]),
coords[iterator - 1], point) - rotation + randint(-8, 8) # Angle with noise.
car_positions.append((point, angle, idx))
iterator += 1
if right:
right_lines = [line.parallel_offset(width / 2 + offset + x, "right") for x in noise]
right_lines = [multilinestrings_to_linestring(x) for x in right_lines]
iterator = 1
while iterator < len(right_lines[0].coords):
right_line = choice(right_lines)
coords = right_line.coords[::-1]
coords = b_spline(coords)
point = coords[iterator]
if abs(euclidean(point, coords[-1])) < 12:
break
if len(car_positions) == 0 or (abs(euclidean(point, car_positions[-1][0])) > min_distance and
(prev_road is None or Point(point).distance(prev_road) > prev_width)):
angle = get_angle((coords[iterator - 1][0] + 5, coords[iterator - 1][1]),
coords[iterator - 1], point) + 180 - rotation + randint(-8, 8)
car_positions.append((point, angle, idx))
iterator += 1
parked_cars = list()
color = (round(uniform(0, 1), 2), round(uniform(0, 1), 2), round(uniform(0, 1), 2), round(uniform(1, 1.3), 2))
for position in car_positions:
if random() <= 0.4:
# Discard with probability of 40% the car to create gaps.
continue
parked_cars.append({"name": "parkedCar", "position": (position[0][0], position[0][1]), "zRot": position[1],
"color": color, "road": position[2]})
return parked_cars, color
def _add_ego_car(roads, ego_roads, directions, actions, ego_waypoints=True):
"""Adds the ego car to the test case. If needed, waypoints can be added as well.
:param roads: List of dicts with the following keys: "left_lanes" (int), "right_lanes" (int), "control_points":
list of 2D points, "width" of the road (int).
:param ego_roads: List of road IDs (int) which the ego-car must travserse.
:param directions: List of directions (Strings) where the ego-car must turn at an intersection.
:param actions: List of actions (Strings) whether the ego-car must stop at an intersection or not.
:ego_waypoints: {@code True} if waypoints should be added.
:return: Dict with the keys "id" ("ego"), "init_state" (initial state with init position and orientation),
"waypoints" (list of dicts with positino, tolerance, road ID), "model" (car model as String), "color" (String).
"""
samples = 100 # Samples to interpolate the road for the waypoints.
waypoints = list() # List containing waypoints.
if ego_waypoints:
lines = list() # LineStrings representing the path.
ego_index = 0
for idx, road in enumerate(ego_roads):
temp_points = roads[road].get("control_points")
temp_points = LineString(temp_points)
if temp_points.coords[0] == temp_points.coords[-1]:
continue
left_lanes = roads[road].get("left_lanes")
right_lanes = roads[road].get("right_lanes")
width = roads[road].get("width")
width_per_lane = width / (left_lanes + right_lanes)
left = False
if idx + 1 < len(ego_roads) and ego_roads[idx + 1] - ego_roads[idx] != 1:
if directions[ego_index] == "left" and right_lanes > 1:
left = True
ego_index += 1
# Calculate parallel linestring so the ego-car drives on the right lane.
if left:
offset = (right_lanes - left_lanes - 1) * width_per_lane / 2
temp_points = temp_points.parallel_offset(offset, "left")
temp_points = multilinestrings_to_linestring(temp_points)
if offset < 0:
temp_points.coords = temp_points.coords[::-1]
else:
offset = (left_lanes + right_lanes - 1) * width_per_lane / 2
temp_points = temp_points.parallel_offset(offset, "right")
temp_points = multilinestrings_to_linestring(temp_points)
temp_points.coords = temp_points.coords[::-1]
temp_points.coords = b_spline(temp_points, samples).tolist()
lines.append(temp_points)
ego_index = 0
road_id = 0
action_index = 0
for idx, _ in enumerate(lines):
control_points = list(lines[idx].coords)
opposite_dir = False
deleted_points = list()
lane_change = False
stop_flag = False
if idx != 0 and ego_roads[idx] - ego_roads[idx - 1] != 1:
if actions[action_index] == "stop":
road_id += 1
stop_flag = True
action_index += 1
opposite_dir = True
if idx + 1 < len(ego_roads) and ego_roads[idx + 1] - ego_roads[idx] != 1:
intersec_point = lines[idx].intersection(lines[idx + 1])
if isinstance(intersec_point, MultiPoint):
intersec_point = Point((intersec_point[0]))
lane_change = True
# Delete half of the points for right turns.
index = len(control_points) // 2
deleted_points = control_points[index:]
control_points = control_points[:index]
if directions[ego_index] == "right":
control_points.append((intersec_point.x, intersec_point.y))
ego_index += 1
# Create waypoints.
i = 0
while i < len(control_points):
if len(waypoints) == 0 or (euclidean(control_points[i], waypoints[-1].get("position")) >= 1.5
and (not opposite_dir
or euclidean(control_points[0], control_points[i]) > 4)):
waypoint = {"position": control_points[i],
"tolerance": 2,
"road": road_id}
waypoints.append(waypoint)
i += 1
del waypoints[-1]
if lane_change:
# Left turns need more waypoints because the car needs to traverse the whole intersection.
i = 0
while i < len(deleted_points):
if len(waypoints) == 0 \
or euclidean(deleted_points[i], waypoints[-1].get("position")) >= 1.5:
waypoint = {"position": deleted_points[i],
"tolerance": 2,
"road": road_id + 1 if stop_flag else road_id}
waypoints.append(waypoint)
i += 1
del waypoints[-1]
# Calculate spawn position of the ego-car.
first_road = LineString(roads[0].get("control_points"))
left_lanes = (roads[0].get("left_lanes"))
right_lanes = (roads[0].get("right_lanes"))
width = roads[0].get("width")
width_per_lane = width / (left_lanes + right_lanes)
offset = (left_lanes + right_lanes - 1) * width_per_lane / 2
first_point = first_road.parallel_offset(offset, "right").coords[::-1][0]
first_point = (first_point[0] + 2, first_point[1])
init_state = {"position": first_point, "orientation": 0}
model = "ETK800"
ego = {"id": "ego",
"init_state": init_state,
"waypoints": waypoints,
"model": model,
"color": "White"}
return ego
def _add_other_0(roads, ego_roads, actions):
"""Adds the first type of NPC. This one always spawns and stays at intersections and never follows the ego-car's
route.
:param roads: List of dicts with the following keys: "left_lanes" (int), "right_lanes" (int), "control_points":
list of 2D points, "width" of the road (int).
:param ego_roads: List of road IDs (int) which the ego-car must traverse.
:param actions: List of actions (Strings) whether the ego-car must stop at an intersection or not.
:return: Dict with the keys "id" ("ego"), "init_state" (initial state with init position and orientation),
"waypoints" (list of dicts with positino, tolerance, road ID), "model" (car model as String), "color" (String),
"spawn_roads" (list of road IDs (Int) where the car should spawn), "end_roads" (list of road IDs (Int) where the
path of the car ends); list of possible spawn roads, list of trigger points to spawn and start the vehicle.
"""
global PARTICIPANTS_SAMPLES
# Drive from one opposite road to another at an intersection.
# Get roads where a car can spawn, be teleported to or drive to.
spawn_roads = list()
triggers = list()
for idx, _ in enumerate(roads):
if idx not in ego_roads:
# Append all possible spawn road IDs.
spawn_roads.append(idx)
i = 0
j = 0
action_index = 0
waypoints = list()
spawns = list() # List of spawn roads.
ends = list() # List of end roads.
while i < len(spawn_roads):
if actions[action_index] == "go":
# Skip everything, if the ego-car doesn't stop at the intersection.
action_index += 1
if i < len(spawn_roads) - 1 and spawn_roads[i + 1] - spawn_roads[i] == 1:
i += 2
else:
i += 1
continue
lines = list()
three_way = False
if len(spawn_roads) > 1 and i < len(spawn_roads) - 1 and spawn_roads[i + 1] - spawn_roads[i] == 1:
# Four-way intersection? Choose random spawn and end road.
spawn_indices = [spawn_roads[i], spawn_roads[i] + 1, spawn_roads[i] + 2]
spawn_index = choice(spawn_indices)
end_indices = [spawn_roads[i] - 1, spawn_roads[i], spawn_roads[i] + 1]
end_index = choice(end_indices)
while end_index == spawn_index:
end_index = choice(end_indices)
else:
# Three-way intersection.
spawn_indices = [spawn_roads[i], spawn_roads[i] + 1]
spawn_index = choice(spawn_indices)
end_index = spawn_roads[i] - 1 if spawn_index == spawn_roads[i] else spawn_roads[i]
end_index = end_index
three_way = True
j += 1
spawns.append(spawn_index)
ends.append(end_index)
# Create path, it consists of three points: spawn point, end of the spawn road, end point.
spawn_point = roads[spawn_index].get("control_points")[0] if three_way and spawn_index == spawn_roads[i] + 1 \
else roads[spawn_index].get("control_points")[0]
end_point = roads[end_index].get("control_points")[-1] if end_index != spawn_roads[i] - 1 \
else roads[end_index].get("control_points")[0]
middle_point = roads[spawn_index].get("control_points")[-1]
orientation = get_angle((spawn_point[0] + 1, spawn_point[1]), spawn_point,
roads[spawn_index].get("control_points")[1]) + 180
# Get path of the intersection road from where the ego-car will come from to determine the trigger point.
road = roads[spawn_roads[i] - 1] if spawn_index != spawn_roads[i] + 2 else roads[spawn_roads[i] - 2]
points = road.get("control_points")
width_per_lane = road.get("width") / (road.get("left_lanes") + road.get("right_lanes"))
offset = (road.get("left_lanes") + road.get("right_lanes") - 1) * width_per_lane / 2
trigger_road = LineString(points)
trigger_road = trigger_road.parallel_offset(offset, "right")
trigger_road = multilinestrings_to_linestring(trigger_road)
# Reversed because the car spawns from the opposite direction.
left_lanes = roads[spawn_index].get("right_lanes")
right_lanes = roads[spawn_index].get("left_lanes")
width = roads[spawn_index].get("width")
points = roads[spawn_index].get("control_points")
points = points[::-1]
line = LineString(points)
width_per_lane = width / (left_lanes + right_lanes)
angle = get_angle(spawn_point, middle_point, end_point)
left = True if (240 <= angle <= 300) and right_lanes > 1 else False
# Get path between spawn point and middle point.
if left:
offset = right_lanes - left_lanes - 1
offset = offset / 2 * width_per_lane
line = line.parallel_offset(offset, "left")
line = multilinestrings_to_linestring(line)
if offset < 0:
line.coords = line.coords[::-1]
else:
offset = (left_lanes + right_lanes - 1) * width_per_lane / 2
line = line.parallel_offset(offset, "right")
line = multilinestrings_to_linestring(line)
line.coords = line.coords[::-1]
line.coords = b_spline(list(line.coords), PARTICIPANTS_SAMPLES).tolist()
# Remove points because otherwise the car will drive to the end of the intersection and then drive reverse.
if left:
line.coords = line.coords[:-4]
else:
line.coords = line.coords[:-9]
lines.append(line)
# Get path between middle point and end point.
left_lanes = roads[end_index].get("left_lanes")
right_lanes = roads[end_index].get("right_lanes")
width = roads[end_index].get("width")
points = roads[end_index].get("control_points")
line = LineString(points)
width_per_lane = width / (left_lanes + right_lanes)
offset = (left_lanes + right_lanes - 1) * width_per_lane / 2
if end_index != spawn_roads[i] - 1:
line = line.parallel_offset(offset, "right")
else:
line = line.parallel_offset(offset, "left")
line = multilinestrings_to_linestring(line)
line.coords = line.coords[::-1]
line.coords = b_spline(list(line.coords), PARTICIPANTS_SAMPLES).tolist()
# Remove points so the waypoints won't begin at the center point of the intersection.
line.coords = line.coords[PARTICIPANTS_SAMPLES // 10:]
lines.append(line)
# Add waypoints.
for line in lines:
for point in list(line.coords):
if len(waypoints) == 0 or euclidean(point, waypoints[-1].get("position")) >= 1.5:
waypoint = {"position": point,
"tolerance": 2,
"road": spawn_index}
waypoints.append(waypoint)
# Add trigger point and spawn point.
trigger_point = {"position": trigger_road.coords[-1],
"action": "spawnAndStart",
"tolerance": 2,
"triggeredBy": "ego",
"triggers": "other_0"}
spawn_point = {"position": list(lines[0].coords)[0], "orientation": orientation}
triggers.append({"triggerPoint": trigger_point, "spawnPoint": spawn_point})
if i < len(spawn_roads) - 1 and spawn_roads[i + 1] - spawn_roads[i] == 1:
# Four-way intersection?
i += 2
else:
i += 1
action_index += 1
if len(waypoints) != 0:
init_state = {"position": waypoints[0].get("position"),
"orientation": triggers[0].get("spawnPoint").get("orientation")}
other = {"id": "other_0",
"init_state": init_state,
"waypoints": waypoints,
"model": "ETK800",
"color": choice(COLORS),
"spawn_roads": spawns,
"end_roads": ends}
return other, spawn_roads, triggers
else:
return None, spawn_roads, list()
def _add_other_1(roads, ego_roads, participants, end_roads):
"""Currently under development. This participant should follow the ego-car from the start and has an arbitrary
end point. This participant doesn't follow the traffic rules at the moment.
:param roads: List of dicts with the following keys: "left_lanes" (int), "right_lanes" (int), "control_points":
list of 2D points, "width" of the road (int).
:param ego_roads: List of road IDs (int) which the ego-car must traverse.
:param participants: List of participants which were previously added.
:param end_roads: List of possible roads where this participant's path ends.
:return: Dict with the keys "id" ("ego"), "init_state" (initial state with init position and orientation),
"waypoints" (list of dicts with positino, tolerance, road ID), "model" (car model as String), "color" (String),
"end_roads" (list of road IDs (Int) where the path of the car ends).
"""
global COLORS
global PARTICIPANTS_SAMPLES
end_roads.append(ego_roads[-1]) # Ego-cars success point is also an end point.
end_index = choice(end_roads) # Choose random end point.
temp_val = 0
road_id = 0
i = 1
while i < len(end_roads):
if end_roads[i - 1] - end_roads[i] != 1:
temp_val += 1
if end_index == end_roads[i]:
road_id = temp_val
break
i += 1
waypoints = list()
ego_waypoints = None
for participant in participants:
if participant.get("id") == "ego":
ego_waypoints = participant.get("waypoints")
# Spawn in front of the ego-car.
for waypoint in ego_waypoints[4:]:
if waypoint.get("road") > road_id:
break
waypoints.append(waypoint)
# Create path for the last road.
left_lanes = roads[end_index].get("left_lanes")
right_lanes = roads[end_index].get("right_lanes")
width = roads[end_index].get("width")
points = roads[end_index].get("control_points")
line = LineString(points)
width_per_lane = width / (left_lanes + right_lanes)
offset = (left_lanes + right_lanes - 1) * width_per_lane / 2
angle = get_angle(waypoints[-2].get("position"), points[0], points[-1])
left = True if (240 <= angle <= 300) and right_lanes > 1 else False
if not left:
line = line.parallel_offset(offset, "right")
else:
line = line.parallel_offset(offset, "left")
line = multilinestrings_to_linestring(line)
line.coords = line.coords[::-1]
line.coords = b_spline(list(line.coords), PARTICIPANTS_SAMPLES).tolist()
line.coords = line.coords[PARTICIPANTS_SAMPLES // 10:]
for point in list(line.coords):
if len(waypoints) == 0 or euclidean(point, waypoints[-1].get("position")) >= 1.5:
waypoint = {"position": point,
"tolerance": 2,
"road": road_id}
waypoints.append(waypoint)
init_state = {"position": ego_waypoints[4].get("position"),
"orientation": 0}
other = {"id": "other_{}".format(1),
"init_state": init_state,
"waypoints": waypoints,
"model": "ETK800",
"color": choice(COLORS),
"end_road": end_index}
return other
def _add_other_2(roads, ego_roads, triggers=None):
"""This participant type always drives between two intersections and passes by the ego-car. This car spawns as
soon as the ego-car leaves an intersection.
:param roads: List of dicts with the following keys: "left_lanes" (int), "right_lanes" (int), "control_points":
list of 2D points, "width" of the road (int).
:param ego_roads: List of road IDs (int) which the ego-car must traverse.
:param triggers: List of trigger points.
:return: Dict with the keys "id" ("ego"), "init_state" (initial state with init position and orientation),
"waypoints" (list of dicts with positino, tolerance, road ID), "model" (car model as String), "color" (String).
"""
if triggers is None:
triggers = list()
global COLORS
global PARTICIPANTS_SAMPLES
spawn_roads = [0] # Possible spawn positions.
i = 1
while i < len(ego_roads):
if i == len(ego_roads) - 1 or (ego_roads[i + 1] - ego_roads[i] == 1 and ego_roads[i] - ego_roads[i - 1] == 1):
spawn_roads.append(ego_roads[i])
i += 1
waypoints = list()
for idx in spawn_roads:
# Create paths (polylines) between two intersections.
left_lanes = roads[idx].get("left_lanes")
right_lanes = roads[idx].get("right_lanes")
width = roads[idx].get("width")
points = roads[idx].get("control_points")
points = points[::-1]
line = LineString(points)
width_per_lane = width / (left_lanes + right_lanes)
offset = (left_lanes + right_lanes - 1) * width_per_lane / 2
line = line.parallel_offset(offset, "right")
line = multilinestrings_to_linestring(line)
line.coords = line.coords[::-1]
line.coords = b_spline(list(line.coords), PARTICIPANTS_SAMPLES).tolist()
line.coords = line.coords[PARTICIPANTS_SAMPLES // 10:]
for point in list(line.coords):
if len(waypoints) == 0 or euclidean(point, waypoints[-1].get("position")) >= 1.5:
waypoint = {"position": point,
"tolerance": 2,
"road": idx}
waypoints.append(waypoint)
trigger_point = {"position": line.coords[-1],
"action": "spawnAndStart",
"tolerance": 2,
"triggeredBy": "ego",
"triggers": "other_2"}
orientation = get_angle((waypoints[-1].get("position")[0] + 1, waypoints[-1].get("position")[1]),
waypoints[-1].get("position"), waypoints[-2].get("position")) + 180
spawn_point = {"position": line.coords[0], "orientation": orientation}
triggers.append({"triggerPoint": trigger_point, "spawnPoint": spawn_point})
init_state = {"position": triggers[-len(spawn_roads)].get("spawnPoint").get("position"),
"orientation": triggers[-len(spawn_roads)].get("spawnPoint").get("orientation")}
other = {"id": "other_{}".format(2),
"init_state": init_state,
"waypoints": waypoints,
"model": "ETK800",
"color": choice(COLORS)}
return other
def _add_other_participants(roads, ego_roads, actions):
"""Adds two implemented participant types to the test case.
:param roads: List of dicts with the following keys: "left_lanes" (int), "right_lanes" (int), "control_points":
list of 2D points, "width" of the road (int).
:param ego_roads: List of road IDs (int) which the ego-car must traverse.
:param actions: List of actions (Strings) whether the ego-car must stop at an intersection or not.
:return: List of participants and trigger points.
"""
participants = list()
other, sr, triggers = _add_other_0(roads, ego_roads, actions)
if other is not None:
participants.append(other)
# other = _add_other_1(roads, ego_roads, individual.get("participants"), sr)
# participants.append(other)
other = _add_other_2(roads, ego_roads, triggers)
participants.append(other)
return participants, triggers
def _merge_roads(population):
"""Merge roads for each individual of a population which will be driven by the ego car. Individual must contain
the keys "roads" (List of roads with the key "control_points" (list of 2D points)) and "ego_roads" (list with road
IDs (Int)).
:param population: Population list.
:return: Population with merged roads.
"""
for individual in population:
iterator = 1
roads = individual.get("roads")
ego_roads = individual.get("ego_roads")
new_road_list = [roads[0]]
while iterator < len(roads):
if iterator in ego_roads and (iterator - 1) in ego_roads:
new_road_list[-1].get("control_points").extend(roads[iterator].get("control_points"))
else:
new_road_list.append(roads[iterator])
iterator += 1
individual["roads"] = new_road_list
return population
def _handle_manual_mode(trigger_pos, oid, ego_waypoints):
"""Creates trigger points for manual traffic lights and stopping the ego-car.
:param trigger_pos: Position of the trigger point.
:param oid: Object ID (Int).
:param ego_waypoints: {@code True} if the ego-car has waypoints or not.
:return: List of trigger points for traffic light switch and stopping the ego-car.
"""
triggers = list()
init_state = choice(["green", "red"])
trigger_point = {"position": trigger_pos,
"action": "switchLights",
"tolerance": 2,
"triggeredBy": "ego",
"triggers": oid,
"initState": init_state,
"switchTo": "green" if init_state == "red" else "red"}
triggers.append({"triggerPoint": trigger_point})
if init_state == "green" and ego_waypoints:
triggers.append({"triggerPoint": {"position": trigger_pos, "action": "stop", "tolerance": 2,
"triggeredBy": "ego", "duration": 4}})
return triggers
def _add_traffic_lights_and_signs(last_point, current_left_lanes, current_right_lanes, width, intersection, road_id,
ego_waypoints):
"""Adds traffic lights and signs to the test case.
:param last_point: Last generated point (tuple).
:param current_left_lanes: Number of left lanes (Int).
:param current_right_lanes: Number of right lanse (Int).
:param width: Width of the road (Int).
:param intersection: Intersection dict object generated after calling self._create_intersection.
:param road_id: Road ID (Int).
:param ego_waypoints: {@code True} if the ego-car has waypoints or not.
:return: List of obstacles (dict with name, position, rotation, intersection ID, pole sign, traffic light mode,
flag whether the ego-car sees the traffic light or sign or not), list of trigger points for traffic light switch
and stopping the ego-car, list of actions at the intersection ("go" or "stop").
"""
global OID_INDEX
global INTERSECTION_ID
intersection_point = intersection.get("intersection_point")
new_left_lanes = intersection.get("new_left_lanes") # Number of left lanes of opposite road.
new_right_lanes = intersection.get("new_right_lanes")
left_point = intersection.get("left_point")
straight_point = intersection.get("straight_point")
right_point = intersection.get("right_point")
layout = intersection.get("layout")
number_of_ways = intersection.get("number_of_ways")
direction = intersection.get("direction")
def opposite_direction(my_point, my_right_point, num_lanes):
"""Adds traffic lights and traffic signs to the opposite roads.
:param my_point: Point of the current direction.
:param my_right_point: The corresponding right point.
:param num_lanes: Number of lanes of the opposite road.
:return: Void.
"""
line = LineString([intersection_point, my_point])
# Calculate rotation of the traffic sign/light.
my_z_rot = int(round(get_angle(temp_point, line.coords[0], line.coords[1]))) + 180
angle = int(round(get_angle(my_right_point, line.coords[0], line.coords[1])))
# Increase offset which is dependent on the angle between the opposite and current road to avoid placing the
# traffic sign/light on the road.
offset = 0.1 if angle <= 270 else ((angle - 270) / 10 + 0.2) * 1.3
# Create vectors to get the obstacle position. Resize factor is dependent on road width.
fac = (old_width * (current_left_lanes + current_right_lanes) / 2 + offset) / line.length
vector = affinity.scale(line, xfact=fac, yfact=fac, origin=line.coords[0])
vector = affinity.rotate(vector, -90, vector.coords[1])
fac = (new_width * (new_left_lanes + new_right_lanes) / 2 + 0.2) / vector.length
vector = affinity.scale(vector, xfact=fac, yfact=fac, origin=vector.coords[1])
my_position = vector.coords[0]
# Traffic lights on opposite roads have either the mode "off" or "flashing".
my_mode = "off" if mode is not None and mode == "manual" else mode
# Always add the opposite sign.
if sign_on_my_road == "stopsign":
obstacles.append({"name": "prioritysign", "position": my_position, "zRot": my_z_rot,
"intersection_id": INTERSECTION_ID})
elif sign_on_my_road == "prioritysign":
obstacles.append({"name": "stopsign", "position": my_position, "zRot": my_z_rot,
"intersection_id": INTERSECTION_ID})
else:
if num_lanes == 1:
obstacles.append({"name": "trafficlightsingle", "position": my_position, "zRot": my_z_rot,
"mode": my_mode, "sign": "priority" if pole_sign == "yield" else "yield",
"intersection_id": INTERSECTION_ID})
else:
obstacles.append({"name": "trafficlightdouble", "position": my_position, "zRot": my_z_rot,
"mode": my_mode, "sign": "priority" if pole_sign == "yield" else "yield",
"intersection_id": INTERSECTION_ID})
def my_direction(my_point, my_right_point):
"""Calculate position of the traffic light/sign on the current road.
:param my_point: Point of the current intersection road.
:param my_right_point: The corresponding right point.
:return: Position and rotation of the obstacle.
"""
# Same procedure as in method opposite_direction().
line = LineString([intersection_point, my_point])
my_z_rot = int(round(get_angle(temp_point, line.coords[0], line.coords[1]))) + 180
angle = int(round(get_angle(my_right_point, line.coords[0], line.coords[1])))
offset = 0.1 if angle <= 270 else ((angle - 270) / 10 + 0.2) * 1.3
fac = (new_width * (new_left_lanes + new_right_lanes) / 2 + offset) / line.length
vector = affinity.scale(line, xfact=fac, yfact=fac, origin=line.coords[0])
vector = affinity.rotate(vector, -90, vector.coords[1])
fac = (old_width * (current_left_lanes + current_right_lanes) / 2 + 0.2) / vector.length
vector = affinity.scale(vector, xfact=fac, yfact=fac, origin=vector.coords[1])
my_position = vector.coords[0]
return my_position, my_z_rot
modes = ["off", "flashing", "manual"]
mode = choice(modes)
oid = None
if mode == "manual":
oid = "traffic_light_manual_" + str(OID_INDEX)
OID_INDEX += 1
# Calculate traffic sign position.
old_width = width / (current_left_lanes + current_right_lanes) # Current road width per lane.
new_width = intersection.get("new_width") / (new_left_lanes + new_right_lanes) # Width per lane of opposite road.
obstacles = list()
temp_point = (intersection_point[0] + 5, intersection_point[1])
# Bottom (ego-car) direction.
position, z_rot = my_direction(last_point, right_point)
pole_sign = "yield" if random() < 0.5 else "priority"
if current_right_lanes == 1:
if current_left_lanes == 1 and new_left_lanes == 1 and new_right_lanes == 1 and random() < 0.5:
if random() < 0.5:
obstacles.append({"name": "stopsign", "position": position, "zRot": z_rot,
"intersection_id": INTERSECTION_ID, "facingEgo": True, "road_id": road_id})
else:
obstacles.append({"name": "prioritysign", "position": position, "zRot": z_rot,
"intersection_id": INTERSECTION_ID, "facingEgo": True, "road_id": road_id})
else:
obstacles.append({"name": "trafficlightsingle", "position": position, "zRot": z_rot, "mode": mode,
"sign": pole_sign, "oid": oid, "intersection_id": INTERSECTION_ID, "facingEgo": True,
"road_id": road_id})
else:
obstacles.append({"name": "trafficlightdouble", "position": position, "zRot": z_rot, "mode": mode,
"sign": pole_sign, "oid": oid, "intersection_id": INTERSECTION_ID, "facingEgo": True,
"road_id": road_id})
sign_on_my_road = obstacles[0].get("name")
triggers = list()
if sign_on_my_road.startswith("trafficlight") and mode == "manual":
triggers = _handle_manual_mode(last_point, oid, ego_waypoints)
if sign_on_my_road.startswith("trafficlight") and mode != "manual" and pole_sign == "yield":
triggers.append({"triggerPoint": {"position": last_point, "action": "stop", "tolerance": 2,
"triggeredBy": "ego", "duration": 4}})
if sign_on_my_road.startswith("stop"):
triggers.append({"triggerPoint": {"position": last_point, "action": "stop", "tolerance": 2,
"triggeredBy": "ego", "duration": 4}})
if sign_on_my_road.startswith("priority") or obstacles[-1].get("sign") == "priority" \
or (len(triggers) != 0 and triggers[0].get("triggerPoint").get("switchTo") == "green"):
action = "go"
else:
action = "stop"
# Left direction.
if number_of_ways == 4 or direction == "left" or layout == "left":
if (direction == "left" or (direction == "straight" and number_of_ways == 4)) and layout != "left":
opposite_direction(left_point, last_point, new_left_lanes)
else:
opposite_direction(left_point, last_point, new_right_lanes)
# Top direction.
if number_of_ways == 4 or direction == "straight" or layout == "straight":
if sign_on_my_road.startswith("trafficlight"):
if current_left_lanes == 1:
this_sign = "trafficlightsingle"
else:
this_sign = "trafficlightdouble"
else:
this_sign = sign_on_my_road
position, z_rot = my_direction(straight_point, left_point)
obstacles.append({"name": this_sign, "position": position,
"zRot": z_rot, "intersection_id": INTERSECTION_ID})
if sign_on_my_road.startswith("trafficlight"):
mode = "off" if mode == "manual" else mode
obstacles[-1]["mode"] = mode
obstacles[-1]["sign"] = pole_sign
# Right direction.
if number_of_ways == 4 or direction == "right" or layout == "right":
if direction == "right" and layout != "right":
opposite_direction(right_point, straight_point, new_left_lanes)
else:
opposite_direction(right_point, straight_point, new_right_lanes)
INTERSECTION_ID += 1
return obstacles, triggers, action
def _preparation(population, traffic=True, ego_waypoints=True, add_parked_cars=True):
"""Adds parked cars, the ego-car and other traffic participants to the test case for a whole population.
:param population: List of individuals after test case generation.
:param traffic: {@code True} if other traffic participants should be added.
:param ego_waypoints: {@code True} if the ego-car should get waypoints.
:param add_parked_cars: {@code True} if parked cars should be added.
:return: Void.
"""
for individual in population:
if add_parked_cars:
parked_cars, color = _add_parked_cars(individual.get("roads"))
individual["obstacles"].extend(parked_cars)
individual["parked_color"] = color
ego = _add_ego_car(individual.get("roads"), individual.get("ego_roads"), individual.get("directions"),
individual.get("actions"), ego_waypoints)
individual.setdefault("participants", []).extend([ego])
if traffic:
participants, triggers = _add_other_participants(individual.get("roads"), individual.get("ego_roads"),
individual.get("actions"))
individual.setdefault("participants", []).extend(participants)
individual.setdefault("triggers", []).extend(triggers)
if traffic or ego_waypoints:
calc_speed_waypoints(individual["participants"])
class UrbanTestGenerator:
"""Procedural content generator to generate test cases in urban-like environments."""
def __init__(self, files_name="urban", traffic=True, spline_degree=2, max_tries=20, population_size=1,
min_segment_length=10, max_segment_length=30, min_nodes=6, max_nodes=16, intersection_length=30,
opposite_road_length=30, straight_length=20, max_left_lanes=2, max_right_lanes=2, max_width=5,
ego_waypoints=True):
self.FILES_NAME = files_name # File name for XML file series.
self.TRAFFIC = traffic # Enable traffic or not.
self.SPLINE_DEGREE = spline_degree # Degree of the interpolation curve.
self.MAX_TRIES = max_tries # Max number of consecutive invalid generated points/segments.
self.POPULATION_SIZE = population_size # Minimum number of generated roads for each generation.
self.MIN_SEGMENT_LENGTH = min_segment_length # Minimum length of a road segment.
self.MAX_SEGMENT_LENGTH = max_segment_length # Maximum length of a road segment.
self.MIN_NODES = min_nodes # Minimum number of control points for each road.
self.MAX_NODES = max_nodes # Maximum number of control points for each road.
self.POPULATION = list() # List of individuals.
self.INTERSECTION_LENGTH = intersection_length # Distance between last generated point to intersection center.
self.OPPOSITE_ROAD = opposite_road_length # Length between the left and right road of an intersection.
self.STRAIGHT_LENGTH = straight_length # Length between intersection center and straight road segment.
self.MAX_LEFT_LANES = max_left_lanes # Maximum allowed number of left lanes.
self.MAX_RIGHT_LANES = max_right_lanes # Maximum allowed number of right lanes.
self.MAX_WIDTH = max_width # Maximum allowed width per lane.
self.EGO_WAYPOINTS = ego_waypoints # Add waypoints for ego-car.
def _bspline(self, roads):
"""Calculate samples of a b-spline interpolation curve. This is the road representation function.
:param roads: List of roads.
:return: List of arrays with samples, representing a bspline of the given control points of the roads.
"""
splined_list = list()
for road in roads:
samples = road.get("samples")
# Calculate splines for each road.
point_list = asarray(road.get("control_points"))
count = len(point_list)
degree = clip(self.SPLINE_DEGREE, 1, count - 1)
# Calculate knot vector.
kv = concatenate(([0] * degree, arange(count - degree + 1), [count - degree] * degree))
# Calculate query range.
u = linspace(False, (count - degree), samples)
# Calculate result.
splined_list.append({"control_points": around(array(splev(u, (kv, point_list.T, degree))).T, 3),
"width": road.get("width")})
return splined_list
def _add_segment(self, last_point, penultimate_point=None):
"""Generates a new random point.
:param last_point: Last point of the control point list as tuple.
:param penultimate_point: Point before the last point as tuple.
:return: A new random point as tuple.
"""
# Create valid area.
x_min = int(round(last_point[0] - self.MAX_SEGMENT_LENGTH))
x_max = int(round(last_point[0] + self.MAX_SEGMENT_LENGTH))
y_min = int(round(last_point[1] - self.MAX_SEGMENT_LENGTH))
y_max = int(round(last_point[1] + self.MAX_SEGMENT_LENGTH))
while True:
# Generate random point.
x_pos = randint(x_min, x_max)
y_pos = randint(y_min, y_max)
point = (x_pos, y_pos)
dist = Point(last_point).distance(Point(point))
deg = None
if penultimate_point is not None:
deg = get_angle((penultimate_point[0], penultimate_point[1]), (last_point[0], last_point[1]), point)
if self.MAX_SEGMENT_LENGTH >= dist >= self.MIN_SEGMENT_LENGTH:
# New point within valid area?
if penultimate_point is not None:
if MIN_DEGREES <= deg <= MAX_DEGREES:
return point
else:
return point
def _create_urban_environment(self):
"""Generates a test case in an urban-like scenario.
:return: Test case. Dict type with the keys "roads" (List of roads), "success_point" (goal location of
ego-car), "ego_roads" (list of road IDs which the ego-car must traverse (Ints)), "obstacles" (list of traffic
lights and signs), "directions" (list of directions at intersections), "triggers" (trigger points for traffic
light switches, stopping the ego-car, spawn and start other traffic participants), "tod" (time of day),
"intersection_roads" (list of road IDs (Int) which are of type intersection, "actions" (list of actions ("go"
and "stop")).
"""
global MIN_DEGREES, MAX_DEGREES
print(colored("Creating urban scenario...", "grey", attrs=['bold']))
# Create first three points by myself.
p0 = (1, 0)
p1 = (30, 0)
p2 = (45, 0)
# Choose random road properties.
left_lanes = randint(1, self.MAX_LEFT_LANES)
right_lanes = randint(1, self.MAX_RIGHT_LANES)
MIN_DEGREES, MAX_DEGREES = calc_min_max_angles(left_lanes + right_lanes)
roads = [{"control_points": [p0, p1, p2], "width": calc_width(left_lanes, right_lanes),
"left_lanes": left_lanes, "right_lanes": right_lanes, "samples": 100, "type": "normal"}]
ego_roads = [0] # Roads which the ego-car must travserse.
intersection_roads = list()
obstacles = list()
directions = list()
triggers = list()
actions = list()
tries = 0
road_index = 0 # Current road ID.
number_of_pieces = 3 # Points and intersections count as one piece.
one_intersection = False # {@code True} if at least one intersection was added to the test case.
intersection_possible = True # {@code True} if it's possible to add an intersection.
intersection_probability = 0.25
lines_of_roads = convert_points_to_lines(roads)
last_point = p2
while (number_of_pieces <= self.MAX_NODES and tries <= self.MAX_TRIES) \
or len(roads[road_index].get("control_points")) == 1:
control_points = roads[road_index].get("control_points")
if intersection_possible and ((number_of_pieces == self.MAX_NODES - 1 and not one_intersection)
or random() <= intersection_probability) and len(control_points) > 1:
# Add intersection, if possible.
intersection = self._create_intersection(control_points[-1], control_points[-2])
intersection_items = get_roads_of_intersection(intersection, control_points[-1],
roads[road_index].get("width"),
roads[road_index].get("left_lanes"),
roads[road_index].get("right_lanes"), road_index)
# Temporarily add new intersection to the road network to validate the network.
new_line, new_road_line = get_intersection_lines(control_points[-1], intersection)
temp_list = deepcopy(roads)
temp_list.extend(intersection_items.get("roads"))
temp_list = self._bspline(temp_list)
polyline = convert_points_to_lines(temp_list)
width_lines = get_width_lines(temp_list)
intersection_roads_temp = deepcopy(intersection_roads)
intersection_roads_temp.extend(intersection_items.get("intersection_roads"))
if not intersection_check_last(lines_of_roads, new_line) \
and not intersection_check_last(lines_of_roads, new_road_line) \
and not intersection_check_width(width_lines, polyline, intersection_roads_temp):
left_lanes = intersection_items.get("left_lanes")
right_lanes = intersection_items.get("right_lanes")
obs, trs, action = _add_traffic_lights_and_signs(control_points[-1],
roads[road_index].get("left_lanes"),
roads[road_index].get("right_lanes"),
roads[road_index].get("width"), intersection,
road_index + 1, self.EGO_WAYPOINTS)
# Add intersection and its corresponding elements to the road network.
actions.append(action)
obstacles.extend(obs)
triggers.extend(trs)
directions.append(intersection.get("direction"))
roads.extend(intersection_items.get("roads"))
ego_roads.extend(intersection_items.get("ego_roads"))
last_point = intersection_items.get("last_point")
intersection_roads.extend(intersection_items.get("intersection_roads"))
road_index = intersection_items.get("road_index")
MIN_DEGREES, MAX_DEGREES = calc_min_max_angles(left_lanes + right_lanes)
lines_of_roads = convert_points_to_lines(roads)
number_of_pieces += 1
one_intersection = True
tries = 0
else:
tries += 1
intersection_possible = False
# Add new point, if possible.
control_points = roads[road_index].get("control_points")
if len(control_points) == 1:
new_point = self._add_segment(control_points[0])
else:
new_point = self._add_segment(control_points[-1], control_points[-2])
# Temporarily add new point to the road network to validate it.
new_line = LineString([(control_points[-1][0], control_points[-1][1]),
(new_point[0], new_point[1])])
temp_list = deepcopy(roads)
temp_list[road_index].get("control_points").append(new_point)
temp_list = self._bspline(temp_list)
polyline = convert_points_to_lines(temp_list)
width_lines = get_width_lines(temp_list)
if not intersection_check_last(lines_of_roads, new_line, max_intersections=0) \
and not intersection_check_width(width_lines, polyline, intersection_roads):
roads[road_index].get("control_points").append(new_point)
intersection_possible = True
tries = 0
number_of_pieces += 1
lines_of_roads = convert_points_to_lines(roads)
last_point = new_point
else:
tries += 1
if number_of_pieces >= self.MIN_NODES and one_intersection:
print(colored("Finished creating urban scenario!", "grey", attrs=['bold']))
return {"roads": roads, "success_point": {"position": last_point, "tolerance": 13}, "ego_roads": ego_roads,
"obstacles": obstacles, "directions": directions, "triggers": triggers, "tod": random(),
"intersection_roads": intersection_roads, "actions": actions, "damage_requests": ["ego"]}
else:
print(colored("Couldn't create a valid road network. Restarting...", "grey", attrs=['bold']))
def _create_intersection(self, last_point, penultimate_point):
"""Generates an intersection with the correspoinding points road properties of the new (opposite) road.
:param last_point: Last generated point.
:param penultimate_point: Penultimate generated point.
:return: Dict with the keys "intersection_point", "straight_point", "left_point", "right_point", "direction"
(where should the ego-car go at this intersection?), "number_of_ways" (three-way/four-way intersection),
"layout" (one of three possibilities of a three-way intersection), "new_left_lanes" (number of left lanes of
the opposite road), "new_right_lanes", "new_width" (width of the opposite road).
"""
layout = None
random_number = random()
# Choose random layout, number of ways and direction.
if random_number <= 0.33:
direction = "straight"
elif 0.33 < random_number <= 0.66:
direction = "left"
else: