-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathdemo_image_directory.m
114 lines (100 loc) · 3.54 KB
/
demo_image_directory.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
%% demo -- processing image directory
% Author: Mahmoud Afifi
% Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
% Please cite our paper:
% Mahmoud Afifi, Konstantinos G. Derpanis, Björn Ommer, and Michael S
% Brown. Learning Multi-Scale Photo Exposure Correction, In CVPR 2021.
%%
clear;
clc
close all;
addpath('bgu'); % for guided upsampling
addpath('exFusion'); % for post-processing fusion (optional) -- this part was not included in our paper
modelName = fullfile('models','model.mat'); % model full file name
base_dir = 'example_images/'; % input image directory
base_dir_out = 'results'; % output directory
exts = {'.jpg','.jpeg','.png','.tif','.bmp'}; % input image extensions
vis = 0; % visualization? to show input/output figure
device = 'gpu'; % use gpu? options: 'gpu' or 'cpu'
pp = 0; % post-processing contrast adjustment -- this part was not used in our paper
fusion = 0; % post-processing fusion of input and output images -- this part was not used in our experiments
L = 4; % number of sub-networks
if exist(base_dir_out,'dir') == 0
mkdir(base_dir_out);
end
load(modelName);
images = {};
for i = 1 : length(exts)
temp_files = dir(fullfile(base_dir,['*' exts{i}]));
images = [images; {temp_files(:).name}'];
end
for i = 1 : length(images)
imageName = images{i};
disp('---------------------------------------------');
fprintf('processing image %s...\n',imageName);
disp('---------------------------------------------');
try
I = im2double(imread(fullfile(base_dir,imageName)));
catch
fprintf('Cannot read image %s!\n',imageName);
continue;
end
%% check image size
sz = size(I);
mxdim = max(sz);
inSz = 512;
if (mxdim > inSz) == 1
S = [1.5, 1.5, 1.5, 1.05]; % scale vector -- tunable hyper-parameter
else
S = [1,1,1,1];
end
I_ = I;
I = imresize(I,inSz/max(sz));
pad_factor = [inSz-size(I,1) inSz-size(I,2)];
I = padarray(I, pad_factor,'replicate','pre');
IMAGE = pre_process_img(I,L,S);
disp('Exposure correction...');
tic
if strcmpi(device,'gpu') == 1
output = gather(extractdata(predict(net,gpuArray(dlarray(IMAGE,...
'SSCB')))))/255;
else
output = extractdata(predict(net,dlarray(IMAGE,'SSCB')))/255;
end
fprintf('Network processing time is %d seconds.\n',toc);
output = output(pad_factor(1)+1:end,pad_factor(2)+1:end,1:3);
I = I(pad_factor(1)+1:end,pad_factor(2)+1:end,:);
if (max(sz) > inSz) == 1
disp('Upsampling...');
tic
output_s = double(imresize(output,[200,200]));
I = double(imresize(I,[200,200]));
results = computeBGU(I, rgb2luminance(I), output_s, [], ...
I_, rgb2luminance(I_));
output = results.result_fs;
fprintf('Upsampling time: %f seconds.\n',toc);
else
output = imresize(output,[sz(1) sz(2)]);
end
if fusion == 1
disp('Fusion...');
tic
Out = zeros(size(output,1),size(output,2),size(output,3),2);
Out(:,:,:,1) = I_;
Out(:,:,:,2) = output;
output = exposure_fusion(Out,[1 1 1]);
fprintf('Fusion time: %f seconds.\n',toc);
end
if pp == 1
output = histAdjust(output);
end
if vis == 1
figure;
subplot(1,2,1);imshow(I_);title('Input image');
subplot(1,2,2);imshow(output);title('Result');
linkaxes;
end
[~,name,ext] = fileparts(imageName);
imwrite(output,fullfile(base_dir_out,[name ext]));
fprintf('\n\n');
end