-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
501 lines (424 loc) · 22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import json
import os
import shutil
import ssl
import subprocess
import traceback
import uuid
import zipfile
from pathlib import Path
from flask import Flask, request, jsonify, send_file, after_this_request, make_response
from werkzeug.utils import secure_filename
import yaml
import hashlib
import boto3
import botocore
import sentry_sdk
import requests
SENTRY_TOKEN = os.getenv("SENTRY_TOKEN")
LOG_URL = os.getenv("LOG_URL")
if SENTRY_TOKEN is not None:
sentry_sdk.init(
dsn=SENTRY_TOKEN
)
app = Flask(__name__, static_url_path='', static_folder='websrc/build/')
UPLOAD_FOLDER = Path('/tmp/blobconverter')
UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True)
AWS_ACCESS = os.getenv("AWS_ACCESS")
AWS_SECRET = os.getenv("AWS_SECRET")
# ugly fix to prevent caching
AWS_CACHE = (AWS_ACCESS is not None and AWS_ACCESS != "") and (AWS_SECRET is not None and AWS_SECRET != "")
print(AWS_CACHE)
if AWS_CACHE:
bucket = boto3.resource('s3', aws_access_key_id=AWS_ACCESS, aws_secret_access_key=AWS_SECRET)\
.Bucket('blobconverter')
class EnvResolver:
def __init__(self):
self.version = request.args.get('version')
self.compiler_path = None
if self.version == "2022.1" or self.version is None or self.version == "":
self.base_path = Path("/opt/intel/openvino2022_1")
self.cache_path = Path("/tmp/modeldownloader/2022_1")
self.version = "2022.1"
self.converter_path = Path(__file__).parent / Path("model_compiler/openvino_2022.1/converter.py")
self.downloader_path = Path(__file__).parent / Path("model_compiler/openvino_2022.1/downloader.py")
self.venv_path = Path(__file__).parent / Path("venvs/venv2022_1")
self.compiler_path = self.base_path / Path("tools/compile_tool/compile_tool")
elif self.version == "2022.3_RVC3":
self.base_path = Path("/opt/intel/openvino2022_3_RVC3")
self.cache_path = Path("/tmp/modeldownloader/2022_3_RVC3")
self.version = "2022.3_RVC3"
self.converter_path = Path(__file__).parent / Path("model_compiler/openvino_2022.3_RVC3/converter.py")
self.downloader_path = Path(__file__).parent / Path("model_compiler/openvino_2022.3_RVC3/downloader.py")
self.venv_path = Path(__file__).parent / Path("venvs/venv2022_3_RVC3")
self.compiler_path = self.base_path / Path("tools/compile_tool/compile_tool")
elif self.version == "2021.4":
self.base_path = Path("/opt/intel/openvino2021_4")
self.cache_path = Path("/tmp/modeldownloader/2021_4")
self.version = "2021.4"
self.converter_path = Path(__file__).parent / Path("model_compiler/openvino_2021.4/converter.py")
self.downloader_path = Path(__file__).parent / Path("model_compiler/openvino_2021.4/downloader.py")
self.venv_path = Path(__file__).parent / Path("venvs/venv2021_4")
elif self.version == "2021.3":
self.base_path = Path("/opt/intel/openvino2021_3")
self.cache_path = Path("/tmp/modeldownloader/2021_3")
self.converter_path = Path(__file__).parent / Path("model_compiler/openvino_2021.3/converter.py")
self.downloader_path = Path(__file__).parent / Path("model_compiler/openvino_2021.3/downloader.py")
self.venv_path = Path(__file__).parent / Path("venvs/venv2021_3")
elif self.version == "2021.2":
self.base_path = Path("/opt/intel/openvino2021_2")
self.cache_path = Path("/tmp/modeldownloader/2021_2")
self.converter_path = Path(__file__).parent / Path("model_compiler/openvino_2021.2/converter.py")
self.downloader_path = Path(__file__).parent / Path("model_compiler/openvino_2021.2/downloader.py")
self.venv_path = Path(__file__).parent / Path("venvs/venv2021_2")
elif self.version == "2021.1":
self.base_path = Path("/opt/intel/openvino2021_1")
self.cache_path = Path("/tmp/modeldownloader/2021_1")
self.converter_path = Path(__file__).parent / Path("model_compiler/openvino_2021.1/converter.py")
self.downloader_path = Path(__file__).parent / Path("model_compiler/openvino_2021.1/downloader.py")
self.venv_path = Path(__file__).parent / Path("venvs/venv2021_1")
elif self.version == "2020.4":
self.base_path = Path("/opt/intel/openvino2020_4")
self.cache_path = Path("/tmp/modeldownloader/2020_4")
self.converter_path = Path(__file__).parent / Path("model_compiler/openvino_2020.4/converter.py")
self.downloader_path = Path(__file__).parent / Path("model_compiler/openvino_2020.4/downloader.py")
self.venv_path = Path(__file__).parent / Path("venvs/venv2020_4")
else:
raise ValueError(f'Unknown version: "{self.version}", available: "2022.3_RVC3", "2022.1", "2021.4", "2021.3", "2021.2", "2021.1", "2020.4"')
self.workdir = UPLOAD_FOLDER / Path(uuid.uuid4().hex)
self.workdir.mkdir(parents=True, exist_ok=True)
self.cache_path.mkdir(parents=True, exist_ok=True)
(self.cache_path / "FP16").mkdir(parents=True, exist_ok=True)
(self.cache_path / "FP16-INT8").mkdir(parents=True, exist_ok=True)
if self.compiler_path is None:
self.compiler_path = self.base_path / Path("deployment_tools/inference_engine/lib/intel64/myriad_compile")
self.model_zoo_type = request.values.get('zoo_type', "intel")
if self.model_zoo_type == "intel":
if self.version in ["2022.1", "2022.3_RVC3"]:
self.model_zoo_path = Path("/app/models/2022_1")
else:
self.model_zoo_path = self.base_path / Path("deployment_tools/open_model_zoo/models")
elif self.model_zoo_type == "depthai":
self.model_zoo_path = Path(__file__).parent / Path("git/depthai-model-zoo/models")
else:
raise ValueError(f'Unknown zoo name: "{self.model_zoo_type}", available: "intel", "depthai"')
self.env = os.environ.copy()
self.env['INTEL_OPENVINO_DIR'] = str(self.base_path)
self.env['OpenCV_DIR'] = str(self.base_path / Path("opencv/cmake"))
self.env['INTEL_CVSDK_DIR'] = str(self.base_path)
self.env['INSTALLDIR'] = str(self.base_path)
self.env['VIRTUAL_ENV'] = str(self.venv_path.absolute())
if self.version in ["2022.1", "2022.3_RVC3"]:
self.env['InferenceEngine_DIR'] = str(self.base_path / Path("runtime/cmake"))
self.env['LD_LIBRARY_PATH'] = f"{self.base_path}/tools/compile_tool:{self.base_path}/extras/opencv/lib:{self.base_path}/deployment_tools/ngraph/lib:/opt/intel/opencl:{self.base_path}/runtime/3rdparty/hddl/lib:{self.base_path}/deployment_tools/inference_engine/external/gna/lib:{self.base_path}/deployment_tools/inference_engine/external/mkltiny_lnx/lib:{self.base_path}/runtime/3rdparty/tbb/lib:{self.base_path}/runtime/lib/intel64:"
self.env['HDDL_INSTALL_DIR'] = str(self.base_path / Path("runtime/3rdparty/hddl"))
self.env['PYTHONPATH'] = f"{self.base_path}/python/python3.8:{self.base_path}/python/python3:{self.base_path}/deployment_tools/open_model_zoo/tools/accuracy_checker:{self.base_path}/extras/opencv/python"
self.env['PATH'] = f"{self.venv_path.absolute()}/bin:{self.base_path}/deployment_tools/model_optimizer:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/{self.venv_path.absolute()}/lib/python3.8/site-packages/openvino/libs"
else:
self.env['InferenceEngine_DIR'] = str(self.base_path / Path("deployment_tools/inference_engine/share"))
self.env['LD_LIBRARY_PATH'] = f"{self.base_path}/opencv/lib:{self.base_path}/deployment_tools/ngraph/lib:/opt/intel/opencl:{self.base_path}/deployment_tools/inference_engine/external/hddl/lib:{self.base_path}/deployment_tools/inference_engine/external/gna/lib:{self.base_path}/deployment_tools/inference_engine/external/mkltiny_lnx/lib:{self.base_path}/deployment_tools/inference_engine/external/tbb/lib:{self.base_path}/deployment_tools/inference_engine/lib/intel64:"
self.env['HDDL_INSTALL_DIR'] = str(self.base_path / Path("deployment_tools/inference_engine/external/hddl"))
self.env['PYTHONPATH'] = f"{self.base_path}/python/python3.6:{self.base_path}/python/python3:{self.base_path}/deployment_tools/open_model_zoo/tools/accuracy_checker:{self.base_path}/deployment_tools/model_optimizer"
self.env['PATH'] = f"{self.venv_path.absolute()}/bin:{self.base_path}/deployment_tools/model_optimizer:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
@property
def executable(self):
return str((self.venv_path / "bin" / "python").absolute())
def run_command(self, command):
print("Running command: {}".format(command))
split_cmd = command.rstrip(' ').split(' ')
try:
proc = subprocess.Popen(split_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=self.env)
stdout, stderr = proc.communicate()
print("Command returned exit code: {}".format(proc.returncode))
if proc.returncode != 0:
filtered_stdout = "\n".join(filter(
lambda line: "[myriad_compile] usb_find_device_with_bcd:266\tLibrary has not been initialized when loaded" not in line,
stdout.decode().split("\n")
))
print(filtered_stdout.split("\n"))
raise CommandFailed(
message=f"Command failed with exit code {proc.returncode}, command: {command}",
payload=dict(
stderr=stderr.decode(),
stdout=filtered_stdout,
exit_code=proc.returncode
)
)
return proc, stdout, stderr
except CommandFailed:
raise
except Exception:
raise CommandFailed(
message=f"Command was unable to execute, command: {command}",
payload=dict(
stderr=traceback.format_exc(),
stdout="",
exit_code=-1
)
)
def sha256sum(filename):
h = hashlib.sha256()
b = bytearray(128*1024)
mv = memoryview(b)
with open(filename, 'rb', buffering=0) as f:
for n in iter(lambda : f.readinto(mv), 0):
h.update(mv[:n])
return h.hexdigest()
def sha384sum(filename):
h = hashlib.sha384()
b = bytearray(128*1024)
mv = memoryview(b)
with open(filename, 'rb', buffering=0) as f:
for n in iter(lambda : f.readinto(mv), 0):
h.update(mv[:n])
return h.hexdigest()
class CommandFailed(Exception):
status_code = 400
def __init__(self, message, payload=None):
Exception.__init__(self)
self.message = message
self.payload = payload
def to_dict(self):
rv = dict(self.payload or ())
rv['message'] = self.message
return rv
class BadRequest(CommandFailed):
status_code = 400
def parse_config(config_path, name, data_type, env):
with open(config_path, "r") as f:
config = yaml.safe_load(f)
if "description" not in config:
config["description"] = f"Configuration file generated for {name} model"
if "license" not in config:
config["license"] = f"Unknown"
if "files" not in config:
raise BadRequest("\"files\" property is missing in model config file")
for file in config["files"]:
if "source" not in file:
raise BadRequest("Each file needs to have \"source\" param")
if "$type" in file["source"]:
if file["source"]["$type"] == "http" and "$REQUEST" in file["source"]["url"]:
local_path = file["source"]["url"].replace("$REQUEST", str((env.workdir / name / data_type).absolute()))
file["source"]["url"] = "file://" + local_path
if "size" not in file:
if not file["source"]["url"].startswith("file://"):
raise BadRequest("You need to supply \"size\" parameter for file when using a remote source")
file["size"] = Path(local_path).stat().st_size
if "sha256" not in file:
if not file["source"]["url"].startswith("file://"):
raise BadRequest("You need to supply \"sha256\" parameter for file when using a remote source")
file["sha256"] = sha256sum(local_path)
if "sha384" not in file:
if not file["source"]["url"].startswith("file://"):
raise BadRequest("You need to supply \"sha384\" parameter for file when using a remote source")
file["sha384"] = sha384sum(local_path)
if "checksum" not in file:
file["checksum"] = file["sha384"]
with open(config_path, "w", encoding='utf8') as f:
yaml.dump(config, f , default_flow_style=False, allow_unicode=True)
return config
def prepare_compile_config(shaves, env):
if env.version.endswith('RVC3'):
config_file_content = {
'PERFORMANCE_HINT': 'THROUGHPUT'
}
elif env.version.startswith('2022'):
config_file_content = {
'MYRIAD_NUMBER_OF_SHAVES': shaves,
'MYRIAD_NUMBER_OF_CMX_SLICES': shaves,
'MYRIAD_THROUGHPUT_STREAMS': 1,
'MYRIAD_ENABLE_MX_BOOT':'NO'
}
elif env.version.startswith('2020'):
config_file_content = {
'VPU_MYRIAD_PLATFORM': 'VPU_MYRIAD_2480',
'VPU_NUMBER_OF_SHAVES': shaves,
'VPU_NUMBER_OF_CMX_SLICES': shaves,
'VPU_MYRIAD_THROUGHPUT_STREAMS': 1
}
else:
config_file_content = {
'MYRIAD_NUMBER_OF_SHAVES': shaves,
'MYRIAD_NUMBER_OF_CMX_SLICES': shaves,
'MYRIAD_THROUGHPUT_STREAMS': 1
}
config_file_path = env.workdir / "myriad_compile_config.txt"
with open(config_file_path, "w") as f:
f.writelines(
[f"{key} {config_file_content[key]}\n" for key in config_file_content.keys()]
)
return config_file_path
def fetch_from_zoo(env, name):
return next(env.model_zoo_path.rglob(f'**/{name}/model.yml'), None)
def format_model_list(models_available_fp16, models_available_int8, models_unavailable):
output = {
"version": "2",
"available" : [],
"unavailable" : []
}
for model in models_available_fp16:
entry = {
"name" : model,
"data_types": ["FP16"]
}
if model in models_available_int8:
entry["data_types"].append("FP16-INT8")
models_available_int8.remove(model)
output["available"].append(entry)
for model in models_available_int8:
entry = {
"name" : model,
"data_types": ["FP16-INT8"]
}
output["available"].append(entry)
return output
@app.route("/compile", methods=['GET', 'POST'])
def compile():
env = EnvResolver()
name = request.values.get('name', '')
if len(name) == 0:
return "Parameter \"name\" is empty!", 400
myriad_shaves = int(request.values.get('myriad_shaves', '6'))
myriad_params_advanced = request.values.get('myriad_params_advanced', '-ip U8')
config_path = env.workdir / name / "model.yml"
config_path.parent.mkdir(parents=True, exist_ok=True)
config_file = request.files.get("config", None)
use_zoo = request.values.get('use_zoo', False)
data_type = request.values.get('data_type', "FP16")
download_ir = request.values.get('download_ir', "false").lower() == "true"
no_cache = request.args.get('no_cache', "false") == "true"
quantization_domain = request.args.get('quantization_domain', "ABC")
print(f"GOT QUANTIZATION DOMAIN: {quantization_domain}")
if (LOG_URL is not None):
content = f"{name}, Params: {myriad_params_advanced}"
requests.post(LOG_URL, json={"text": content })
if config_file is None:
if use_zoo:
zoo_path = fetch_from_zoo(env, name)
if zoo_path is None:
return "Model {} not found in model zoo".format(name), 400
with zoo_path.open() as in_f, config_path.open("w") as out_f:
out_f.write(in_f.read())
else:
return "File named \"config\" must be present in the request form", 400
else:
config_file.save(config_path)
with open(config_path) as f:
raw_config = f.read()
file_paths = {}
for form_name, file in request.files.items():
if form_name == "config":
continue
path = env.workdir / name / data_type / secure_filename(file.filename)
path.parent.mkdir(parents=True, exist_ok=True)
file_paths[form_name] = path
file.save(path)
config = parse_config(config_path, name, data_type, env)
compile_config_path = prepare_compile_config(myriad_shaves, env)
commands = []
xml_path = env.workdir / name / data_type / (name + ".xml")
if len(file_paths) == 0:
commands.append(
f"{env.executable} {env.downloader_path} --precisions {data_type} --output_dir {env.workdir} --cache_dir {env.cache_path / data_type} --num_attempts 5 --name {name} --model_root {env.workdir}"
)
print(commands)
if use_zoo:
preconvert_script = next(env.model_zoo_path.rglob(f"**/{name}/pre-convert.py"), None)
if preconvert_script is not None:
commands.append(
f"{env.executable} {preconvert_script} {env.workdir / name} {env.workdir / name}"
)
if config["framework"] != "dldt":
commands.append(
f"{env.executable} {env.converter_path} --precisions {data_type} --output_dir {env.workdir} --download_dir {env.workdir} --name {name} --model_root {env.workdir}"
)
out_path = xml_path.with_suffix('.blob')
out_path.parent.mkdir(parents=True, exist_ok=True)
if env.version == "2022.3_RVC3":
commands.append(f"{env.compiler_path} -m {xml_path} -o {out_path} -d VPUX.3400 {myriad_params_advanced}")
elif env.version == "2022.1":
commands.append(f"{env.compiler_path} -m {xml_path} -o {out_path} -c {compile_config_path} -d MYRIAD {myriad_params_advanced}")
else:
commands.append(f"{env.compiler_path} -m {xml_path} -o {out_path} -c {compile_config_path} {myriad_params_advanced}")
hash_obj = hashlib.sha256(json.dumps({**dict(request.args), **dict(request.values)}).encode())
if config_file is not None:
hash_obj.update(raw_config.encode())
for file_path in list(file_paths.values()):
with open(file_path, 'rb') as f:
hash_obj.update(f.read())
req_hash = hash_obj.hexdigest()
if request.args.get("dry", "false") == "true":
return jsonify(commands)
data = None
model_from_cache = False
if AWS_CACHE:
try:
if not no_cache or not download_ir:
print(f"Trying to get blob {req_hash} from cache...")
data = bucket.Object("{}.blob".format(req_hash)).get()['Body'].read()
with out_path.open("wb") as f:
f.write(data)
print(f"Data {req_hash} found in cache...")
except botocore.exceptions.ClientError as ex:
print(f"Data {req_hash} not found in cache...")
if ex.response['Error']['Code'] != 'NoSuchKey':
raise ex
if data is None:
for command in commands:
env.run_command(command)
else:
model_from_cache = True
major, minor = env.version.replace('_R3', '').replace('_RVC3', '').split('.')
if not env.version in ["2022.3_RVC3"]:
with open(out_path, 'rb+') as f:
f.seek(60)
f.write(int(major).to_bytes(4, byteorder="little"))
f.write(int(minor).to_bytes(4, byteorder="little"))
if AWS_CACHE:
if not download_ir and not model_from_cache:
f.seek(0)
print(f"Uploading final blob {req_hash} to the cache...")
bucket.put_object(Body=f.read(), Key='{}.blob'.format(req_hash))
if download_ir:
zipf = zipfile.ZipFile(out_path.with_suffix('.zip'), 'w', zipfile.ZIP_DEFLATED)
zipf.write(xml_path, xml_path.name)
zipf.write(xml_path.with_suffix('.bin'), xml_path.with_suffix('.bin').name)
zipf.write(out_path, out_path.name)
zipf.close()
out_path = out_path.with_suffix('.zip')
@after_this_request
def remove_dir(response):
shutil.rmtree(env.workdir, ignore_errors=True)
return response
response = make_response(send_file(out_path, as_attachment=True, attachment_filename=out_path.name))
response.headers['X-HASH'] = req_hash
return response
@app.errorhandler(CommandFailed)
def handle_invalid_usage(error):
response = jsonify(error.to_dict())
sentry_sdk.capture_exception(error)
response.status_code = error.status_code
return response
@app.route("/zoo_models", methods=['GET'])
def get_zoo_models():
# TODO: Add RVC3 models for Intel zoo
env = EnvResolver()
if env.version == "2022.1" and env.model_zoo_type == "intel":
with open('./models/openvino_2022_1.json', 'r') as file:
data = json.loads(file.read()) # format to new style for now
return format_model_list(data["available"], [], [])
elif env.version == "2022.3_RVC3" and env.model_zoo_type == "depthai":
with open('./models/depthai_2022_1_RVC3_new.json', 'r') as file:
return file.read()
elif env.version == "2022.3_RVC3" and env.model_zoo_type == "intel":
with open('./models/intel_2022_1_RVC3_new.json', 'r') as file:
return file.read() # proper format
_, stdout, _ = env.run_command(f"{env.executable} {env.downloader_path} --model_root {env.model_zoo_path} --print_all")
return format_model_list(stdout.decode().split(), [], [])
@app.route("/update", methods=['GET'])
def update():
subprocess.check_call(["/bin/bash", "/app/docker_scheduled.sh"])
return jsonify(status="Updated")
@app.route('/')
def root():
return app.send_static_file('index.html')