Skip to content

Latest commit

 

History

History
193 lines (164 loc) · 8.32 KB

deploy_SuperEdge.md

File metadata and controls

193 lines (164 loc) · 8.32 KB

Tengine + SuperEdge 一条指令跨平台部署边缘AI应用


案例说明

​ 案例基于开源AI推理框架Tengine 实现容器调用边缘硬件NPU资源,完成高效物体检测的推理任务,并通过开源边缘容器方案 SuperEdge 轻松将应用调度到边缘计算节点,实现一条指令部署边缘计算跨平台AI应用案例。

TengineOPEN AI LAB 主导开发,该项目实现了深度学习神经网络模型在嵌入式设备上的快速高效部署需求。为实现在众多AIoT应用中的跨平台部署,本项目使用C语言进行核心模块开发,针对嵌入式设备资源有限的特点进行了深度框架裁剪。同时采用了完全分离的前后端设计,有利于 CPU、GPU、NPU 等异构计算单元的快速移植和部署,降低评估、迁移成本。

SuperEdge 是基于原生 Kubernetes 的边缘容器管理系统。该系统把云原生能力扩展到边缘侧,很好的实现了云端对边缘端的管理和控制,极大简化了应用从云端部署到边缘端的过程。SuperEdge 为应用实现边缘原生化提供了强有力的支持。

img

硬件环境准备

物品 描述
Master服务器 SuperEdge Master 服务器, 用于应用调度,可采用X86 or Arm 架构,本例中采用X86服务器
Khadas VIM3 应用负载工作节点,内置 A311D SoC 的单板计算机,内置 5Tops NPU 加速器,各大商城有售
USB 摄像头 连接Khadas VIM3,输入实时视频流
液晶显示器 连接Khadas VIM3,控制台操作,实时输出示例运行结果
HDMI连接线 由于Khadas VIM3 的 TYPE C 接口与 HDMI 接口过于紧凑,需要寻找小一点接口的 HMDI 连接线

操作步骤

1.安装SuperEdge环境

  • 安装SuperEdge Master节点(x86_64)
wget https://superedge-1253687700.cos.ap-guangzhou.myqcloud.com/v0.4.0/amd64/edgeadm-linux-amd64-v0.4.0.tgz
tar -zxvf edgeadm-linux-amd64-v0.4.0.tgz
cd edgeadm-linux-amd64-v0.4.0
./edgeadm init --kubernetes-version=1.18.2 --image-repository superedge.tencentcloudcr.com/superedge --service-cidr=10.96.0.0/12 --pod-network-cidr=10.224.0.0/16 --install-pkg-path ./kube-linux-*.tar.gz --apiserver-cert-extra-sans=<Master Public IP> --apiserver-advertise-address=<Master Intranet IP> --enable-edge=true
#复制k8s配置文件到用户目录下
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
#去掉资源限制,解决khadas VIM3安装SuperEdge导致设备重启的问题
kubectl patch DaemonSet kube-proxy -n kube-system --type='json' -p='[{"op": "replace", "path": "/spec/template/spec/containers/0/resources", "value":{}}]'
kubectl patch DaemonSet kube-flannel-ds -n kube-system --type='json' -p='[{"op": "replace", "path": "/spec/template/spec/containers/0/resources", "value":{}}]'
kubectl patch DaemonSet tunnel-edge -n edge-system --type='json' -p='[{"op": "replace", "path": "/spec/template/spec/containers/0/resources", "value":{}}]'
kubectl patch DaemonSet edge-health -n edge-system --type='json' -p='[{"op": "replace", "path": "/spec/template/spec/containers/0/resources", "value":{}}]'
kubectl patch DaemonSet application-grid-wrapper-node -n edge-system --type='json' -p='[{"op": "replace", "path": "/spec/template/spec/containers/0/resources", "value":{}}]'
  • Khadas VIM3 设备加入集群
# 由于demo使用了桌面GUI画图,开机登录界面导致应用无法正常启动,因此需设置设备开机桌面自动登录
#步骤:打开图形桌面右上角 settings-users-AutoLogin 配置,开机无需输入密码进入桌面,重新启动,无登录画面即可

#Disable fenix-zram-config service to disable the swap 
sudo systemctl disable fenix-zram-config
sudo systemctl status fenix-zram-config

# Download edgeadm arm64 version to install SuperEdge Node 
wget https://superedge-1253687700.cos.ap-guangzhou.myqcloud.com/v0.4.0/arm64/edgeadm-linux-arm64-v0.4.0.tgz
tar -zxvf edgeadm-linux-arm64-v0.4.0.tgz
cd edgeadm-linux-arm64-v0.4.0

#Upgrade cni-plugins from v0.8.3 to v0.8.6, 解决在Khadas上安装SuperEdge和CNI失败的问题,
tar -zxvf kube-linux-arm64-v1.18.2.tar.gz
wget https://github.com/containernetworking/plugins/releases/download/v0.8.6/cni-plugins-linux-arm64-v0.8.6.tgz
mv cni-plugins-linux-arm64-v0.8.6.tgz edge-install/cni/cni-plugins-linux-arm64-v0.8.3.tgz
sed -i 's/\tload_kernel/# load_kernel/' edge-install/script/init-node.sh
tar -zcvf kube-linux-arm64-v1.18.2.1.tar.gz edge-install/

#加入集群
./edgeadm join <Master Public/Intranet IP Or Domain>:6443 --token xxxx --discovery-token-ca-cert-hash sha256:xxxxxxxxxx --install-pkg-path kube-linux-arm64-v1.18.2.1.tar.gz --enable-edge=true
  • Khadas VIM3 设备开启Xserver授权
# Access to Xserver
# Execute script on device Terminal
xhost +

2.(可选)构建Tengine demo容器镜像


该步骤介绍如何构建Tengine Demo镜像,如采用Docker Hub镜像, 可跳过。

  • 下载文件包到Khadas VIM3设备上,构建Tengine物体识别应用docker镜像
#Download docker build packeage [~91M] from OPEN AI LAB server
wget http://tengine2.openailab.com:9527/openailab/yolo.tar.gz
tar -zxvf yolo.tar.gz
cd superedge
docker build -t yolo:latest .

Dockerfile文件如下所示

FROM ubuntu:20.04
MAINTAINER openailab
RUN apt-get update
RUN apt-get install -y tzdata
RUN apt-get install -y libopencv-dev
RUN apt-get install -y libcanberra-gtk-module
RUN useradd -m openailab
COPY libtengine-lite.so /root/myapp/
COPY demo_yolo_camera /root/myapp/
COPY tm_330_330_330_1_3.tmcache /root/myapp/
ADD models /root/myapp/models/
COPY tm_88_88_88_1_1.tmcache /root/myapp/
COPY tm_classification_timvx /root/myapp/
COPY libOpenVX.so /lib/
COPY libGAL.so /lib/
COPY libVSC.so /lib/
COPY libArchModelSw.so /lib/
COPY libNNArchPerf.so /lib/
COPY libgomp.so.1 /lib/aarch64-linux-gnu/
COPY libm.so.6 /lib/aarch64-linux-gnu/
WORKDIR /root/myapp/
USER openailab
CMD ["./demo_yolo_camera"]

如果需要自己编译并生成demo_yolo_camera程序,具体操作参考demo_videocapture user manual

3.编写 yolo.yaml 编排文件

  • 在SuperEdge Master节点上编辑k8s编排文件yolo.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: yolo
  labels:
    name: yolo
spec:
  replicas: 1
  selector:
    matchLabels:
      name: yolo
  template:
    metadata:
      labels:
        name: yolo
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                  - key: kubernetes.io/hostname
                    operator: In
                    values:
                      - khadas
      containers:
        - name: yolo
          image: tengine3/yolo:v1.0
          env:
          - name: DISPLAY
            value: :0
          volumeMounts:
            - name: dev
              mountPath: /dev
            - name: unix
              mountPath: /tmp/.X11-unix
          securityContext:
            privileged: true
      volumes:
        - name: dev
          hostPath:
            path: /dev
        - name: unix
          hostPath:
            path: /tmp/.X11-unix

4. Tengine物体识别应用应用部署

执行编排文件

kubectl apply -f yolo.yaml

5.案例效果与验证

通过命令查看部署状态

peter@peter-VirtualBox:~$ kubectl get deployment yolo -o wide
NAME   READY   UP-TO-DATE   AVAILABLE   AGE   CONTAINERS   IMAGES               SELECTOR
yolo   1/1     1            1           21h   yolo         tengine3/yolo:v1.0   name=yolo

peter@peter-VirtualBox:~$ kubectl get pod yolo-76d95967bb-zxggk 
NAME                    READY   STATUS    RESTARTS   AGE
yolo-76d95967bb-zxggk   1/1     Running   3          79m

打开Khadas VIM设备的显示器,观察到如下效果

img