-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrephrase_tokenize.py
91 lines (70 loc) · 2.78 KB
/
rephrase_tokenize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
Tokenize human eval dataset.
"""
import argparse
import json
import os
import numpy as np
from transformers import AutoTokenizer
from train.mmap_dataset import MmapDataset
def tokenize_one_sample(sample):
prompt, solution = sample
prompt_ids = tokenizer(prompt, return_tensors="np").input_ids[0]
if args.partial:
prompt_ids = [prompt_ids[i] for i in range(len(prompt_ids)) if i % 2 == 0]
solution_ids = tokenizer(solution, return_tensors="np").input_ids[0]
# Remove BOS, add EOS
solution_ids = np.concatenate((solution_ids[1:], [tokenizer.eos_token_id]))
token_ids = np.concatenate((prompt_ids, solution_ids))
is_ignore = np.zeros(token_ids.shape, dtype=np.int8)
#is_ignore[:prompt_ids.shape[0]] = 1
return token_ids, is_ignore
def tokenize_dataset(rows):
token_ids = []
is_ignore = []
for row in rows:
tmp_token_ids, tmp_is_ignore = tokenize_one_sample(row)
token_ids.append(tmp_token_ids)
is_ignore.append(tmp_is_ignore)
return token_ids, is_ignore
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--in-file", type=str, default=
os.path.expanduser("~/datasets/humaneval/HumanEval.jsonl"))
parser.add_argument("--out-file", type=str)
parser.add_argument(
"--model-name-or-path", type=str, default="meta-llama/Llama-2-7b-hf"
)
parser.add_argument("--max-seq-len", type=int, default=1024)
parser.add_argument("--partial", action="store_true")
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
out_file = args.out_file or args.in_file.replace(".jsonl", ".tok")
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False)
# Load the dataset
#dataset = load_dataset("openai_humaneval")["test"]
dataset = [json.loads(l) for l in open(args.in_file)]
rows = []
for row in dataset:
if "prompt" in row:
prompt, solution = row["prompt"], row["canonical_solution"]
else:
prompt, solution = "", row["text"]
rows.append((prompt, solution))
# Tokenize
token_ids, is_ignore = tokenize_dataset(rows)
max_seq_len = max(len(x) for x in token_ids)
print(f"#seq: {len(token_ids)}")
print(f"max_seq_len: {max_seq_len}")
mmap_dataset = MmapDataset.create_by_pad_truncate(
token_ids, is_ignore, args.max_seq_len, padding_value=tokenizer.unk_token_id)
mmap_dataset.save(out_file)
print(f"Save to {out_file}")
if args.debug:
item = mmap_dataset[0]
token_ids = item["token_ids"]
is_ignore = item["is_ignore"]
padding_mask = item["padding_mask"]
token_ids[is_ignore] = tokenizer.unk_token_id
print(tokenizer.decode(token_ids))