-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmetrics.py
632 lines (561 loc) · 31.1 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
from subprocess import Popen, PIPE, CalledProcessError
import json
from text.torchtext.datasets.generic import Query
import logging
import os
import re
import string
import numpy as np
import collections
from multiprocessing import Pool, cpu_count
from contextlib import closing
from sklearn import metrics
from pyrouge import Rouge155
from sacrebleu import corpus_bleu
import pdb
def to_lf(s, table):
aggs = [y.lower() for y in Query.agg_ops]
agg_to_idx = {x: i for i, x in enumerate(aggs)}
conditionals = [y.lower() for y in Query.cond_ops]
headers_unsorted = [(y.lower(), i) for i, y in enumerate(table['header'])]
headers = [(y.lower(), i) for i, y in enumerate(table['header'])]
headers.sort(reverse=True, key=lambda x: len(x[0]))
condition_s, conds = None, []
if 'where' in s:
s, condition_s = s.split('where', 1)
s = ' '.join(s.split()[1:-2])
sel, agg = None, 0
for col, idx in headers:
if col == s:
sel = idx
if sel is None:
s = s.split()
agg = agg_to_idx[s[0]]
s = ' '.join(s[1:])
for col, idx in headers:
if col == s:
sel = idx
full_conditions = []
if not condition_s is None:
condition_s = ' ' + condition_s + ' '
for idx, col in enumerate(headers):
condition_s = condition_s.replace(' ' + col[0] + ' ', ' Col{} '.format(col[1]))
condition_s = condition_s.strip()
for idx, col in enumerate(conditionals):
new_s = []
for t in condition_s.split():
if t == col:
new_s.append('Cond{}'.format(idx))
else:
new_s.append(t)
condition_s = ' '.join(new_s)
s = condition_s
conds = re.split('(Col\d+ Cond\d+)', s)
if len(conds) == 0:
conds = [s]
conds = [x for x in conds if len(x.strip()) > 0]
full_conditions = []
for i, x in enumerate(conds):
if i % 2 == 0:
x = x.split()
col_num = int(x[0].replace('Col', ''))
opp_num = int(x[1].replace('Cond', ''))
full_conditions.append([col_num, opp_num])
else:
x = x.split()
if x[-1] == 'and':
x = x[:-1]
x = ' '.join(x)
if 'Col' in x:
new_x = []
for t in x.split():
if 'Col' in t:
idx = int(t.replace('Col', ''))
t = headers_unsorted[idx][0]
new_x.append(t)
x = new_x
x = ' '.join(x)
if 'Cond' in x:
new_x = []
for t in x.split():
if 'Cond' in t:
idx = int(t.replace('Cond', ''))
t = conditionals[idx]
new_x.append(t)
x = new_x
x = ' '.join(x)
full_conditions[-1].append(x)
logical_form = {'sel': sel, 'conds': full_conditions, 'agg': agg}
return logical_form
def computeLFEM(greedy, answer, args):
answer = [x[0] for x in answer]
count = 0
correct = 0
text_answers = []
for idx, (g, ex) in enumerate(zip(greedy, answer)):
count += 1
text_answers.append([ex['answer'].lower()])
try:
lf = to_lf(g, ex['table'])
gt = ex['sql']
conds = gt['conds']
lower_conds = []
for c in conds:
lc = c
lc[2] = str(lc[2]).lower()
lower_conds.append(lc)
gt['conds'] = lower_conds
correct += lf == gt
except Exception as e:
continue
return correct / count * 100, text_answers
def score(answer, gold):
if len(gold) > 0:
gold = set.union(*[simplify(g) for g in gold])
answer = simplify(answer)
tp, tn, sys_pos, real_pos = 0, 0, 0, 0
if answer == gold:
if not ('unanswerable' in gold and len(gold) == 1):
tp += 1
else:
tn += 1
if not ('unanswerable' in answer and len(answer) == 1):
sys_pos += 1
if not ('unanswerable' in gold and len(gold) == 1):
real_pos += 1
return np.array([tp, tn, sys_pos, real_pos])
def simplify(answer):
return set(''.join(c for c in t if c not in string.punctuation) for t in answer.strip().lower().split()) - {'the',
'a',
'an',
'and',
''}
# http://nlp.cs.washington.edu/zeroshot/evaluate.py
def computeCF1(greedy, answer):
scores = np.zeros(4)
for g, a in zip(greedy, answer):
scores += score(g, a)
tp, tn, sys_pos, real_pos = scores.tolist()
total = len(answer)
if tp == 0:
p = r = f = 0.0
else:
p = tp / float(sys_pos)
r = tp / float(real_pos)
f = 2 * p * r / (p + r)
return f * 100, p * 100, r * 100
def normalize_text(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
# TODO: Modify the metric: deleting repeated words
# def remove_repeat(text):
# pass
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def compute_multi_ones_hot_vector(y, args):
val_task2dict = {
'AAPD': {'csir': 0, 'statme': 1, 'quantph': 2, 'csit': 3, 'mathit': 4, 'statap': 5, 'cscv': 6, 'cscl': 7,
'csai': 8,
'mathna': 9, 'csms': 10, 'cscr': 11, 'csse': 12, 'cslg': 13, 'csni': 14, 'cssy': 15, 'csds': 16,
'cscc': 17,
'csfl': 18, 'csro': 19, 'mathoc': 20, 'csma': 21, 'cspf': 22, 'cssi': 23, 'physicssocph': 24,
'csdc': 25,
'csdb': 26, 'mathco': 27, 'statml': 28, 'mathpr': 29, 'csne': 30, 'csdm': 31, 'condmatstatmech': 32,
'cslo': 33,
'cscy': 34, 'condmatdisnn': 35, 'csna': 36, 'csce': 37, 'cssc': 38, 'csgt': 39, 'cshc': 40,
'qbioqm': 41,
'csdl': 42, 'qbionc': 43, 'cscg': 44, 'cmplg': 45, 'cspl': 46, 'mathlo': 47, 'mathnt': 48, 'csmm': 49,
'mathst': 50, 'statth': 51, 'nlinao': 52, 'physicsdataan': 53},
'AAPDEnhance': {'csir': 0, 'statme': 1, 'quantph': 2, 'csit': 3, 'mathit': 4, 'statap': 5, 'cscv': 6, 'cscl': 7,
'csai': 8,
'mathna': 9, 'csms': 10, 'cscr': 11, 'csse': 12, 'cslg': 13, 'csni': 14, 'cssy': 15, 'csds': 16,
'cscc': 17,
'csfl': 18, 'csro': 19, 'mathoc': 20, 'csma': 21, 'cspf': 22, 'cssi': 23, 'physicssocph': 24,
'csdc': 25,
'csdb': 26, 'mathco': 27, 'statml': 28, 'mathpr': 29, 'csne': 30, 'csdm': 31,
'condmatstatmech': 32,
'cslo': 33,
'cscy': 34, 'condmatdisnn': 35, 'csna': 36, 'csce': 37, 'cssc': 38, 'csgt': 39, 'cshc': 40,
'qbioqm': 41,
'csdl': 42, 'qbionc': 43, 'cscg': 44, 'cmplg': 45, 'cspl': 46, 'mathlo': 47, 'mathnt': 48,
'csmm': 49,
'mathst': 50, 'statth': 51, 'nlinao': 52, 'physicsdataan': 53},
'AAPDOri': {'csir': 0, 'statme': 1, 'quantph': 2, 'csit': 3, 'mathit': 4, 'statap': 5, 'cscv': 6, 'cscl': 7,
'csai': 8,
'mathna': 9, 'csms': 10, 'cscr': 11, 'csse': 12, 'cslg': 13, 'csni': 14, 'cssy': 15, 'csds': 16,
'cscc': 17,
'csfl': 18, 'csro': 19, 'mathoc': 20, 'csma': 21, 'cspf': 22, 'cssi': 23, 'physicssocph': 24,
'csdc': 25,
'csdb': 26, 'mathco': 27, 'statml': 28, 'mathpr': 29, 'csne': 30, 'csdm': 31, 'condmatstatmech': 32,
'cslo': 33,
'cscy': 34, 'condmatdisnn': 35, 'csna': 36, 'csce': 37, 'cssc': 38, 'csgt': 39, 'cshc': 40,
'qbioqm': 41,
'csdl': 42, 'qbionc': 43, 'cscg': 44, 'cmplg': 45, 'cspl': 46, 'mathlo': 47, 'mathnt': 48,
'csmm': 49,
'mathst': 50, 'statth': 51, 'nlinao': 52, 'physicsdataan': 53},
'AAPDDoc': {'er': 0, 'ed': 1, 'ey': 2, 'ew': 3, 'fl': 4, 'ee': 5, 'fj': 6, 'ft': 7, 'ec': 8, 'fr': 9, 'fd': 10,
'fg': 11, 'eq': 12, 'fv': 13, 'dy': 14, 'et': 15, 'fx': 16, 'fu': 17, 'ei': 18, 'eh': 19, 'eg': 20,
'dx': 21, 'fk': 22, 'eu': 23, 'dz': 24, 'ek': 25, 'fw': 26, 'ej': 27, 'ef': 28, 'fo': 29, 'fa': 30,
'fc': 31, 'dw': 32, 'en': 33, 'ea': 34, 'ex': 35, 'fp': 36, 'ff': 37, 'fn': 38, 'ep': 39, 'eb': 40,
'fq': 41, 'fh': 42, 'es': 43, 'ev': 44, 'fb': 45, 'el': 46, 'em': 47, 'ez': 48, 'fm': 49, 'fi': 50,
'fe': 51, 'eo': 52, 'fs': 53},
'WOS46985': {"111120": 0, "111104": 1, "11131": 2, "11181": 3, "11153": 4, "11143": 5, "11192": 6, "11142": 7,
"11190": 8, "111100": 9, "111126": 10, "1116": 11, "11149": 12, "111107": 13, "11144": 14,
"11126": 15,
"1115": 16, "111116": 17, "1119": 18, "111121": 19, "11164": 20, "11191": 21, "11151": 22,
"11125": 23,
"11180": 24, "11113": 25, "11186": 26, "11178": 27, "11199": 28, "111111": 29, "111108": 30,
"111119": 31, "11117": 32, "111128": 33, "111113": 34, "11185": 35, "111106": 36, "11189": 37,
"11146": 38, "111102": 39, "11130": 40, "11198": 41, "11127": 42, "11116": 43, "11134": 44,
"11183": 45,
"111130": 46, "11179": 47, "11158": 48, "111105": 49, "11111": 50, "11173": 51, "11177": 52,
"111133": 53, "11150": 54, "111103": 55, "11129": 56, "11162": 57, "11161": 58, "111110": 59,
"11136": 60, "11135": 61, "11137": 62, "11119": 63, "1117": 64, "11120": 65, "1113": 66,
"11115": 67,
"111112": 68, "11147": 69, "11154": 70, "11123": 71, "11169": 72, "11196": 73, "11160": 74,
"11159": 75,
"111122": 76, "11114": 77, "11157": 78, "11165": 79, "111101": 80, "11110": 81, "11118": 82,
"111131": 83, "11195": 84, "11139": 85, "11155": 86, "11168": 87, "1111": 88, "111129": 89,
"11148": 90,
"11182": 91, "11112": 92, "11188": 93, "11170": 94, "111123": 95, "11166": 96, "1114": 97,
"11175": 98,
"111117": 99, "11156": 100, "11138": 101, "111124": 102, "111118": 103, "1110": 104, "11128": 105,
"11197": 106, "11124": 107, "11121": 108, "111115": 109, "11171": 110, "11133": 111, "1112": 112,
"111127": 113, "11141": 114, "111109": 115, "11187": 116, "111114": 117, "11176": 118,
"11122": 119,
"11167": 120, "11174": 121, "11184": 122, "11145": 123, "11172": 124, "111132": 125, "11193": 126,
"111125": 127, "11152": 128, "11163": 129, "11194": 130, "1118": 131, "11132": 132, "11140": 133},
'WOS11967': {"11118": 0, "1113": 1, "11122": 2, "11121": 3, "11123": 4, "11113": 5, "1111": 6, "11111": 7,
"1114": 8, "11128": 9, "1115": 10, "1116": 11, "11131": 12, "11125": 13, "11110": 14, "1118": 15,
"11117": 16, "1110": 17, "11116": 18, "11127": 19, "11119": 20, "11114": 21, "11132": 22,
"11115": 23, "11126": 24, "1112": 25, "11130": 26, "11129": 27, "11124": 28, "1119": 29,
"11112": 30, "11120": 31, "1117": 32},
'WOS5736': {"1119": 0, "1117": 1, "1110": 2, "1115": 3, "1116": 4, "1118": 5, "11110": 6, "1114": 7, "1112": 8,
"1111": 9, "1113": 10},
'20news': {'recsporthockey': 0, 'recmotorcycles': 1, 'talkreligionmisc': 2, 'socreligionchristian': 3,
'talkpoliticsmideast': 4, 'compsysmachardware': 5, 'scimed': 6, 'miscforsale': 7, 'altatheism': 8,
'compsysibmpchardware': 9, 'compgraphics': 10, 'composmswindowsmisc': 11, 'recautos': 12,
'recsportbaseball': 13, 'scicrypt': 14, 'scielectronics': 15, 'scispace': 16, 'compwindowsx': 17,
'talkpoliticsguns': 18, 'talkpoliticsmisc': 19},
'TREC6': {'abbr': 0, 'loc': 1, 'num': 2, 'hum': 3, 'enty': 4, 'desc': 5},
'TREC50': {'country': 0, 'animal': 1, 'ord': 2, 'abb': 3, 'state': 4, 'word': 5, 'volsize': 6, 'temp': 7,
'religion': 8, 'symbol': 9, 'substance': 10, 'manner': 11, 'city': 12, 'exp': 13, 'termeq': 14,
'letter': 15, 'weight': 16, 'code': 17, 'sport': 18, 'other': 19, 'money': 20, 'count': 21,
'food': 22, 'plant': 23, 'reason': 24, 'color': 25, 'product': 26, 'period': 27, 'gr': 28,
'currency': 29, 'title': 30, 'dismed': 31, 'speed': 32, 'cremat': 33, 'desc': 34, 'perc': 35,
'date': 36, 'body': 37, 'instru': 38, 'mount': 39, 'veh': 40, 'techmeth': 41, 'def': 42, 'event': 43,
'ind': 44, 'lang': 45, 'dist': 46},
'OhsumedSingle': {'11113': 0, '11112': 1, '11115': 2, '11117': 3, '11103': 4, '11118': 5, '11119': 6,
'11123': 7, '11120': 8, '11105': 9, '11109': 10, '11104': 11, '11121': 12, '11116': 13,
'11101': 14, '11107': 15, '11102': 16, '11108': 17, '11106': 18, '11111': 19, '11114': 20,
'11122': 21, '11110': 22},
'OhsumedMulti': {'11113': 0, '11112': 1, '11115': 2, '11117': 3, '11103': 4, '11118': 5, '11119': 6, '11123': 7,
'11120': 8, '11105': 9, '11109': 10, '11104': 11, '11121': 12, '11116': 13, '11101': 14,
'11107': 15, '11102': 16, '11108': 17, '11106': 18, '11111': 19, '11114': 20, '11122': 21,
'11110': 22},
'YahooAnswers': {'societyculture': 0, 'sciencemathematics': 1, 'health': 2, 'educationreference': 3,
'computersinternet': 4, 'sports': 5, 'businessfinance': 6, 'entertainmentmusic': 7,
'familyrelationships': 8, 'politicsgovernment': 9},
'Reuters90': {'sugar': 0, 'bop': 1, 'moneyfx': 2, 'dlr': 3, 'carcass': 4, 'reserves': 5, 'wheat': 6,
'interest': 7, 'income': 8, 'mealfeed': 9, 'nkr': 10, 'sunoil': 11, 'natgas': 12, 'petchem': 13,
'cottonoil': 14, 'fuel': 15, 'retail': 16, 'tea': 17, 'rye': 18, 'jet': 19, 'sunseed': 20,
'cocoa': 21, 'dmk': 22, 'jobs': 23, 'grain': 24, 'corn': 25, 'cpu': 26, 'hog': 27, 'soyoil': 28,
'coconut': 29, 'palmoil': 30, 'rand': 31, 'heat': 32, 'lei': 33, 'oilseed': 34, 'rapeseed': 35,
'lead': 36, 'orange': 37, 'trade': 38, 'ironsteel': 39, 'silver': 40, 'oat': 41, 'castoroil': 42,
'crude': 43, 'strategicmetal': 44, 'coconutoil': 45, 'instaldebt': 46, 'propane': 47, 'nzdlr': 48,
'coffee': 49, 'naphtha': 50, 'cpi': 51, 'gold': 52, 'palladium': 53, 'nickel': 54, 'dfl': 55,
'copper': 56, 'rice': 57, 'groundnutoil': 58, 'rubber': 59, 'platinum': 60, 'ipi': 61, 'zinc': 62,
'palmkernel': 63, 'linoil': 64, 'acq': 65, 'gas': 66, 'soymeal': 67, 'tin': 68, 'soybean': 69,
'ship': 70, 'potato': 71, 'unknown': 72, 'groundnut': 73, 'vegoil': 74, 'moneysupply': 75,
'cotton': 76, 'livestock': 77, 'yen': 78, 'alum': 79, 'sunmeal': 80, 'earn': 81, 'sorghum': 82,
'lumber': 83, 'barley': 84, 'gnp': 85, 'lcattle': 86, 'wpi': 87, 'housing': 88, 'copracake': 89,
'rapeoil': 90},
'Reuters115': {'dfl': 0, 'rice': 1, 'silver': 2, 'nkr': 3, 'sunseed': 4, 'nickel': 5, 'dkr': 6, 'oat': 7,
'plywood': 8, 'lead': 9, 'rubber': 10, 'fuel': 11, 'naphtha': 12, 'rye': 13, 'linmeal': 14,
'housing': 15, 'wpi': 16, 'instaldebt': 17, 'palmkernel': 18, 'ringgit': 19, 'tea': 20,
'heat': 21, 'inventories': 22, 'unknown': 23, 'alum': 24, 'sunmeal': 25, 'orange': 26,
'potato': 27, 'soyoil': 28, 'ship': 29, 'coconutoil': 30, 'jet': 31, 'copper': 32, 'grain': 33,
'crude': 34, 'palmoil': 35, 'cocoa': 36, 'copracake': 37, 'castoroil': 38, 'propane': 39,
'saudriyal': 40, 'gas': 41, 'moneysupply': 42, 'cornglutenfeed': 43, 'cpi': 44, 'sorghum': 45,
'earn': 46, 'platinum': 47, 'soybean': 48, 'carcass': 49, 'reserves': 50, 'livestock': 51,
'natgas': 52, 'soymeal': 53, 'zinc': 54, 'corn': 55, 'palladium': 56, 'cruzado': 57, 'cpu': 58,
'bop': 59, 'gold': 60, 'ironsteel': 61, 'income': 62, 'acq': 63, 'ipi': 64, 'gnp': 65,
'cottonoil': 66, 'yen': 67, 'linoil': 68, 'petchem': 69, 'lcattle': 70, 'sunoil': 71, 'stg': 72,
'tapioca': 73, 'rapeoil': 74, 'fishmeal': 75, 'groundnutoil': 76, 'oilseed': 77, 'skr': 78,
'dlr': 79, 'hog': 80, 'linseed': 81, 'dmk': 82, 'can': 83, 'castorseed': 84, 'sugar': 85,
'rupiah': 86, 'rapemeal': 87, 'retail': 88, 'lit': 89, 'peseta': 90, 'wool': 91, 'groundnut': 92,
'lei': 93, 'rapeseed': 94, 'vegoil': 95, 'mealfeed': 96, 'citruspulp': 97, 'interest': 98,
'porkbelly': 99, 'coconut': 100, 'tin': 101, 'lumber': 102, 'trade': 103, 'austdlr': 104,
'cornoil': 105, 'rand': 106, 'coffee': 107, 'cotton': 108, 'jobs': 109, 'nzdlr': 110,
'wheat': 111, 'moneyfx': 112, 'strategicmetal': 113, 'barley': 114, 'redbean': 115},
'20newsSingle': {'scimed': 0, 'socreligionchristian': 1, 'scielectronics': 2, 'recautos': 3,
'talkreligionmisc': 4, 'miscforsale': 5, 'compgraphics': 6, 'composmswindowsmisc': 7,
'recmotorcycles': 8, 'compsysibmpchardware': 9, 'altatheism': 10, 'recsporthockey': 11,
'talkpoliticsguns': 12, 'recsportbaseball': 13, 'talkpoliticsmideast': 14,
'talkpoliticsmisc': 15, 'compwindowsx': 16, 'scispace': 17, 'compsysmachardware': 18,
'scicrypt': 19},
'20newsMulti': {'scimed': 0, 'socreligionchristian': 1, 'scielectronics': 2, 'recautos': 3,
'talkreligionmisc': 4, 'miscforsale': 5, 'compgraphics': 6, 'composmswindowsmisc': 7,
'recmotorcycles': 8, 'compsysibmpchardware': 9, 'altatheism': 10, 'recsporthockey': 11,
'talkpoliticsguns': 12, 'recsportbaseball': 13, 'talkpoliticsmideast': 14,
'talkpoliticsmisc': 15, 'compwindowsx': 16, 'scispace': 17, 'compsysmachardware': 18,
'scicrypt': 19},
'AmazonFullReview': {'clsone': 0, 'clstwo': 1, 'clsthree': 2, 'clsfour': 3, 'clsfive': 4},
'R8': {'acq': 0, 'crude': 1, 'earn': 2, 'grain': 3, 'interest': 4, 'moneyfx': 5, 'ship': 6, 'trade': 7},
'R52': {'acq': 0, 'alum': 1, 'bop': 2, 'carcass': 3, 'cocoa': 4, 'coffee': 5, 'copper': 6, 'cotton': 7,
'cpi': 8, 'cpu': 9, 'crude': 10, 'dlr': 11, 'earn': 12, 'fuel': 13, 'gas': 14, 'gnp': 15, 'gold': 16,
'grain': 17, 'heat': 18, 'housing': 19, 'income': 20, 'instaldebt': 21, 'interest': 22, 'ipi': 23,
'ironsteel': 24, 'jet': 25, 'jobs': 26, 'lead': 27, 'lei': 28, 'livestock': 29, 'lumber': 30,
'mealfeed': 31, 'moneyfx': 32, 'moneysupply': 33, 'natgas': 34, 'nickel': 35, 'orange': 36,
'petchem': 37, 'platinum': 38, 'potato': 39, 'reserves': 40, 'retail': 41, 'rubber': 42, 'ship': 43,
'strategicmetal': 44, 'sugar': 45, 'tea': 46, 'tin': 47, 'trade': 48, 'vegoil': 49, 'wpi': 50,
'zinc': 51},
'YelpFullReview': {'clsone': 0, 'clstwo': 1, 'clsthree': 2, 'clsfour': 3, 'clsfive': 4},
}
assert len(args.val_tasks) == 1, 'for now only support single task micro f1 metric'
l2i_dict = val_task2dict[args.val_tasks[0]]
y = y.split()
# ground_truth_tokens = ground_truth.split()
total_length = len(l2i_dict)
ones_hot = np.zeros(total_length, dtype=np.int)
# true_ones_hot = np.zeros(total_length, dtype=np.int)
hot_indices = [l2i_dict[token] for token in y if token in l2i_dict.keys()]
# true_hot_indices = [l2i_dict[token] for token in ground_truth_tokens]
ones_hot[hot_indices] = 1
# true_ones_hot[true_hot_indices] = 1
return ones_hot
def f1_score(prediction, ground_truth):
prediction_tokens = prediction.split()
ground_truth_tokens = ground_truth.split()
common = collections.Counter(prediction_tokens) & collections.Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match(prediction, ground_truth):
return prediction == ground_truth
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for idx, ground_truth in enumerate(ground_truths):
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def computeMicroF1(outputs, targets, args):
preds = np.array([compute_multi_ones_hot_vector(output, args) for output in outputs], dtype=np.int)
tgts = np.array([compute_multi_ones_hot_vector(tgt[0], args) for tgt in targets], dtype=np.int)
micro_f1 = metrics.f1_score(tgts, preds, average='micro') * 100.0
precision = metrics.precision_score(tgts, preds, average='micro') * 100.0
recall = metrics.recall_score(tgts, preds, average='micro') * 100.0
return micro_f1, precision, recall
def computeF1(outputs, targets):
# Origin
return sum([metric_max_over_ground_truths(f1_score, o, t) for o, t in zip(outputs, targets)]) / len(outputs) * 100
# preds = np.array([compute_multi_ones_hot_vector(output) for output in outputs], dtype=np.int)
# tgts = np.array([compute_multi_ones_hot_vector(tgt[0]) for tgt in targets], dtype=np.int)
# micro_f1 = metrics.f1_score(tgts, preds, average='micro') * 100.0
# return micro_f1
def computeEM(outputs, targets):
outs = [metric_max_over_ground_truths(exact_match, o, t) for o, t in zip(outputs, targets)]
return sum(outs) / len(outputs) * 100
def computeBLEU(outputs, targets):
targets = [[t[i] for t in targets] for i in range(len(targets[0]))]
return corpus_bleu(outputs, targets, lowercase=True).score
class Rouge(Rouge155):
"""Rouge calculator class with custom command-line options."""
# See full list of options here:
# https://github.com/andersjo/pyrouge/blob/master/tools/ROUGE-1.5.5/README.txt#L82
DEFAULT_OPTIONS = [
'-a', # evaluate all systems
'-n', 4, # max-ngram
'-x', # do not calculate ROUGE-L
'-2', 4, # max-gap-length
'-u', # include unigram in skip-bigram
'-c', 95, # confidence interval
'-r', 1000, # number-of-samples (for resampling)
'-f', 'A', # scoring formula
'-p', 0.5, # 0 <= alpha <=1
'-t', 0, # count by token instead of sentence
'-d', # print per evaluation scores
]
def __init__(self, n_words=None,
keep_files=False, options=None):
if options is None:
self.options = self.DEFAULT_OPTIONS.copy()
else:
self.options = options
if n_words:
options.extend(["-l", n_words])
stem = "-m" in self.options
super(Rouge, self).__init__(
n_words=n_words, stem=stem,
keep_files=keep_files)
def _run_rouge(self):
# Get full options
options = (
['-e', self._rouge_data] +
list(map(str, self.options)) +
[os.path.join(self._config_dir, "settings.xml")])
logging.info("Running ROUGE with options {}".format(" ".join(options)))
# print([self._rouge_bin] + list(options))
pipes = Popen([self._rouge_bin] + options, stdout=PIPE, stderr=PIPE)
std_out, std_err = pipes.communicate()
div_by_zero_error = std_err.decode("utf-8"). \
startswith("Illegal division by zero")
if pipes.returncode == 0 or div_by_zero_error:
# Still returns the correct output even with div by zero
return std_out
else:
raise ValueError(
std_out.decode("utf-8") + "\n" + std_err.decode("utf-8"))
def computeROUGE(greedy, answer):
rouges = compute_rouge_scores(greedy, answer)
if len(rouges) > 0:
avg_rouges = {}
for key in rouges[0].keys():
avg_rouges[key] = sum(
[r.get(key, 0.0) for r in rouges]) / len(rouges) * 100
else:
avg_rouges = None
return avg_rouges
def split_sentences(txt, splitchar=".", include_splitchar=False):
"""Split sentences of a text based on a given EOS char."""
out = [s.split() for s in txt.strip().split(splitchar) if len(s) > 0]
return out
def compute_rouge_scores(summs, refs, splitchar='.', options=None, parallel=True):
assert len(summs) == len(refs)
options = [
'-a', # evaluate all systems
'-c', 95, # confidence interval
'-m', # use Porter stemmer
'-n', 2, # max-ngram
'-w', 1.3, # weight (weighting factor for WLCS)
]
rr = Rouge(options=options)
rouge_args = []
for summ, ref in zip(summs, refs):
letter = "A"
ref_dict = {}
for r in ref:
ref_dict[letter] = [x for x in split_sentences(r, splitchar) if len(x) > 0]
letter = chr(ord(letter) + 1)
s = [x for x in split_sentences(summ, splitchar) if len(x) > 0]
rouge_args.append((s, ref_dict))
if parallel:
with closing(Pool(cpu_count() // 2)) as pool:
rouge_scores = pool.starmap(rr.score_summary, rouge_args)
else:
rouge_scores = []
for s, a in rouge_args:
rouge_scores.append(rr.score_summary(s, ref_dict))
return rouge_scores
def to_delta_state(line):
delta_state = {'inform': {}, 'request': {}}
try:
if line == 'None' or line.strip() == '' or line.strip() == ';':
return delta_state
inform, request = [[y.strip() for y in x.strip().split(',')] for x in line.split(';')]
inform_pairs = {}
for i in inform:
try:
k, v = i.split(':')
inform_pairs[k.strip()] = v.strip()
except:
pass
delta_state = {'inform': inform_pairs, 'request': request}
except:
pass
finally:
return delta_state
def update_state(state, delta):
for act, slot in delta.items():
state[act] = slot
return state
def dict_cmp(d1, d2):
def cmp(a, b):
for k1, v1 in a.items():
if k1 not in b:
return False
else:
if v1 != b[k1]:
return False
return True
return cmp(d1, d2) and cmp(d2, d1)
def computeDialogue(greedy, answer):
examples = []
for idx, (g, a) in enumerate(zip(greedy, answer)):
examples.append((a[0][0], g, a[0][1], idx))
examples.sort()
turn_request_positives = 0
turn_goal_positives = 0
joint_goal_positives = 0
ldt = None
for ex in examples:
if ldt is None or ldt.split('_')[:-1] != ex[0].split('_')[:-1]:
state, answer_state = {}, {}
ldt = ex[0]
delta_state = to_delta_state(ex[1])
answer_delta_state = to_delta_state(ex[2])
state = update_state(state, delta_state['inform'])
answer_state = update_state(answer_state, answer_delta_state['inform'])
if dict_cmp(state, answer_state):
joint_goal_positives += 1
if delta_state['request'] == answer_delta_state['request']:
turn_request_positives += 1
if dict_cmp(delta_state['inform'], answer_delta_state['inform']):
turn_goal_positives += 1
joint_goal_em = joint_goal_positives / len(examples) * 100
turn_request_em = turn_request_positives / len(examples) * 100
turn_goal_em = turn_goal_positives / len(examples) * 100
answer = [(x[-1], x[-2]) for x in examples]
answer.sort()
answer = [[x[1]] for x in answer]
return joint_goal_em, turn_request_em, turn_goal_em, answer
def compute_metrics(greedy, answer, rouge=False, bleu=False, corpus_f1=False, logical_form=False, args=None,
dialogue=False):
metric_keys = []
metric_values = []
if not isinstance(answer[0], list):
answer = [[a] for a in answer]
# if logical_form:
# lfem, answer = computeLFEM(greedy, answer, args)
# metric_keys += ['lfem']
# metric_values += [lfem]
# if dialogue:
# joint_goal_em, request_em, turn_goal_em, answer = computeDialogue(greedy, answer)
# avg_dialogue = (joint_goal_em + request_em) / 2
# metric_keys += ['joint_goal_em', 'turn_request_em', 'turn_goal_em', 'avg_dialogue']
# metric_values += [joint_goal_em, request_em, turn_goal_em, avg_dialogue]
# em = computeEM(greedy, answer)
# metric_keys += ['em']
# metric_values += [em]
# if bleu:
# bleu = computeBLEU(greedy, answer)
# metric_keys.append('bleu')
# metric_values.append(bleu)
# if rouge:
# rouge = computeROUGE(greedy, answer)
# metric_keys += ['rouge1', 'rouge2', 'rougeL', 'avg_rouge']
# avg_rouge = (rouge['rouge_1_f_score'] + rouge['rouge_2_f_score'] + rouge['rouge_l_f_score']) / 3
# metric_values += [rouge['rouge_1_f_score'], rouge['rouge_2_f_score'], rouge['rouge_l_f_score'], avg_rouge]
norm_greedy = [normalize_text(g) for g in greedy]
norm_answer = [[normalize_text(a) for a in al] for al in answer]
mf1, precision, recall = computeMicroF1(norm_greedy, norm_answer, args)
# nem = computeEM(norm_greedy, norm_answer)
metric_keys.extend(['micro-f1', 'precision', 'recall'])
metric_values.extend([mf1, precision, recall])
# if corpus_f1:
# corpus_f1, precision, recall = computeCF1(norm_greedy, norm_answer)
# metric_keys += ['corpus_f1', 'precision', 'recall']
# metric_values += [corpus_f1, precision, recall]
metric_dict = collections.OrderedDict(list(zip(metric_keys, metric_values)))
return metric_dict, answer