forked from BVLC/caffe
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict_bn.cpp
620 lines (559 loc) · 23.9 KB
/
predict_bn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//Jaehyun Lim
#ifdef WITH_PYTHON_LAYER
#include "boost/python.hpp"
namespace bp = boost::python;
#endif
#include <glog/logging.h>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <fstream>
#include "hdf5.h"
#include "leveldb/db.h"
#include "lmdb.h"
#include "caffe/caffe.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/upgrade_proto.hpp"
#include <boost/shared_ptr.hpp>
#include <boost/pointer_cast.hpp>
#include "caffe/layers/batch_norm_layer.hpp"
using caffe::Blob;
using caffe::Caffe;
using caffe::Net;
using caffe::Layer;
using caffe::BatchNormLayer;
using caffe::shared_ptr;
using caffe::Timer;
using caffe::vector;
//using caffe::LayerParameter_LayerType_BN;
using caffe::caffe_set;
using caffe::NetParameter;
using boost::dynamic_pointer_cast;
// Define flags
DEFINE_int32(gpu, -1,
"Run in GPU mode on given device ID.");
//DEFINE_string(solver, "",
// "The solver definition protocol buffer text file.");
DEFINE_string(train_model, "",
"The model definition protocol buffer text file..");
DEFINE_string(test_model, "",
"The model definition protocol buffer text file..");
//DEFINE_string(snapshot, "",
// "The snapshot solver state to resume training.");
DEFINE_string(weights, "",
"The pretrained weights to initialize finetuning. "
"Cannot be set simultaneously with snapshot.");
DEFINE_int32(train_iterations, 0,
"The number of iterations to run.");
//DEFINE_int32(numdata, 0,
// "The total number of test data. (you should specify in this implementation).");
//DEFINE_int32(batchsize, 0,
// "The batchsize. (you should specify in this implementation).");
DEFINE_string(labellist, "",
"The text file having labels and their corresponding indices.");
DEFINE_string(outfile, "",
"The text file including prediction probabilities.");
DEFINE_string(target_blob, "prob",
"The name of blob you want to print out.");
int main(int argc, char** argv) {
// Print output to stderr (while still logging).
FLAGS_alsologtostderr = 1;
// Usage message.
gflags::SetUsageMessage("\n"
"usage: predict_bn <args>\n\n");
// Run tool or show usage.
caffe::GlobalInit(&argc, &argv);
if (argc == 8) {
//return GetBrewFunction(caffe::string(argv[1]))();
} else {
gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/predict_bn");
}
// label (open label txt for label names)
std::ifstream label_file;
label_file.open(FLAGS_labellist.c_str());
if(!label_file) {
printf("Please specify the label list file. For example, ndsb_labels.txt.\n");
return 0;
}
std::vector< std::string > label_names;
std::vector< int > label_indices;
std::string label_name;
int label_index;
int num_classes;
while(label_file >> label_index >> label_name) {
//printf("label_index: %d, label_name: %s\n", label_index, label_name.c_str());
label_names.push_back(label_name);
label_indices.push_back(label_index);
}
num_classes = label_indices.size();
printf("# of classes : %d\n", num_classes);
//
CHECK_GT(FLAGS_train_model.size(), 0) << "Need a train model definition to do preprosessing.";
CHECK_GT(FLAGS_test_model.size(), 0) << "Need a test model definition to predict.";
CHECK_GT(FLAGS_weights.size(), 0) << "Need model weights to predict.";
// Set device id and mode
if (FLAGS_gpu >= 0) {
LOG(INFO) << "Use GPU with device ID " << FLAGS_gpu;
Caffe::SetDevice(FLAGS_gpu);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
}
// Instantiate the caffe net.
Net<float>* caffe_net_ptr = new Net<float>(FLAGS_train_model, caffe::TRAIN);
Net<float>& caffe_net = *caffe_net_ptr;
caffe_net.CopyTrainedLayersFrom(FLAGS_weights);
// Calculate iterations
int iterations = -1, numdata = -1, batchsize = -1;
const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
LOG(INFO) << "# of layers " << (int)layers.size();
for (int i = 0; i < layers.size(); ++i) {
const caffe::string& layername = layers[i]->layer_param().name();
LOG(INFO) << std::setfill(' ') << std::setw(10) << layername << " " << layers[i]->layer_param().type();
}
LOG(INFO) << "layer type: " << layers[0]->layer_param().type();
//switch (layers[0]->layer_param().type()) {
if (layers[0]->layer_param().type() == "Data" ||
layers[0]->layer_param().type() == "CompactData") {//case 5: {// DATA
batchsize = layers[0]->layer_param().data_param().batch_size();
//LOG(INFO) << "batch_size: " << batch_size;
int backend = (int)layers[0]->layer_param().data_param().backend();
LOG(INFO) << "backend (LEVELDB: 0, LMDB:1): " << backend;
if (backend == 1) { // LMDB
MDB_env* mdb_env;
MDB_stat mdb_mst;
CHECK_EQ(mdb_env_create(&mdb_env), MDB_SUCCESS) << "mdb_env_create failed";
CHECK_EQ(mdb_env_set_mapsize(mdb_env, 1099511627776), MDB_SUCCESS); // 1TB
CHECK_EQ(mdb_env_open(mdb_env,
layers[0]->layer_param().data_param().source().c_str(),
MDB_RDONLY|MDB_NOTLS, 0664), MDB_SUCCESS) << "mdb_env_open failed";
(void)mdb_env_stat(mdb_env, &mdb_mst);
//LOG(INFO) << "FINALLY!!! # of images: " << mdb_mst.ms_entries;
numdata = mdb_mst.ms_entries;
} else { // LEVELDB
LOG(INFO) << "LEVELDB is currently not supported. sorry :)";
return 0;
}
}
else if (layers[0]->layer_param().type() == "ImageData") { //case 12: { // IMAGE_DATA
batchsize = layers[0]->layer_param().image_data_param().batch_size();
LOG(INFO) << "batch_size: " << batchsize;
unsigned int number_of_lines = 0;
FILE *infile = fopen(layers[0]->layer_param().image_data_param().source().c_str(), "r");
int ch;
while (EOF != (ch=getc(infile)))
if ('\n' == ch)
++number_of_lines;
//printf("%u\n", number_of_lines);
numdata = (int)number_of_lines;
}
// case 43: { // IMAGE_DATA_AFFINE
// batchsize = layers[0]->layer_param().image_data_affine_param().batch_size();
// LOG(INFO) << "batch_size: " << batchsize;
// unsigned int number_of_lines = 0;
//
// FILE *infile = fopen(layers[0]->layer_param().image_data_affine_param().source().c_str(), "r");
// int ch;
//
// while (EOF != (ch=getc(infile)))
// if ('\n' == ch)
// ++number_of_lines;
// //printf("%u\n", number_of_lines);
// numdata = (int)number_of_lines;
// break;
// }
// case 44: { // IMAGE_DATA_MULTIPLE_INFERENCE
// batchsize = layers[0]->layer_param().image_data_multi_infer_param().batch_size();
// LOG(INFO) << "batch_size: " << batchsize;
// unsigned int number_of_lines = 0;
//
// FILE *infile = fopen(layers[0]->layer_param().image_data_multi_infer_param().source().c_str(), "r");
// int ch;
//
// while (EOF != (ch=getc(infile)))
// if ('\n' == ch)
// ++number_of_lines;
// //printf("%u\n", number_of_lines);
// numdata = (int)number_of_lines;
// break;
// }
else { //default:
LOG(INFO) << "predict.cpp assumes layers[0] is either DATA or IMAGE_DATA.";
return 0;
}
if (batchsize == -1 || numdata == -1) {
LOG(INFO) << "something wrong in reading # of data and batchsize.";
return 0;
} else {
LOG(INFO) << "num data: " << numdata << ", batchsize: " << batchsize;
}
if (FLAGS_train_iterations == 0) {
iterations =(int)( (float)numdata / (float)batchsize ) + 1;
} else {
iterations = FLAGS_train_iterations;
}
LOG(INFO) << "# of iterations " << iterations;
// configure how many bn layers are in the network
//const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
int num_bn_layers = 0;
vector<int> bn_layers;
bn_layers.resize(0);
for (int i = 0; i < layers.size(); ++i) {
//if (LayerParameter_LayerType_BN == layers[i]->layer_param().type()) {
if ("BatchNorm" == layers[i]->layer_param().type() ||
"BN" == layers[i]->layer_param().type()) {
bn_layers.push_back(i);
LOG(INFO) << std::setfill(' ') << std::setw(10) << layers[i]->layer_param().name() << " (" << bn_layers[num_bn_layers]+1 << " th layer)";
num_bn_layers++;
}
}
// calculate mean (need to scannning every training data set)
// for each iteration (of Forward())
// do summation of batch_mean_ (of BatchNormLayer)
// do summation of E(X^2) (via batch_variance_)
//
// calculate variance (need to scanning every training data set)
// - E(X)^2 to buffer_
// - E(X^2) - E(X)^2
const vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs();
int img_idx = 0, img_processed_idx = 0;
vector<shared_ptr<Blob<float> > > //spatial_mean_vecs,
//spatial_variance_vecs,
batch_mean_vecs,
batch_variance_vecs,
//buffer_blob_vecs,
//x_norm_vecs,
spatial_sum_multiplier_vecs,
batch_sum_multiplier_vecs;
// spatial_mean_vecs.resize(num_bn_layers);
// spatial_variance_vecs.resize(num_bn_layers);
batch_mean_vecs.resize(num_bn_layers);
batch_variance_vecs.resize(num_bn_layers);
// buffer_blob_vecs.resize(num_bn_layers);
// x_norm_vecs.resize(num_bn_layers);
spatial_sum_multiplier_vecs.resize(num_bn_layers);
batch_sum_multiplier_vecs.resize(num_bn_layers);
for (int k = 0; k < num_bn_layers; ++k) {
const vector<Blob<float>*>& bottom = bottom_vecs[bn_layers[k]];
// dimension
int N = bottom[0]->num();
int C = bottom[0]->channels();
int H = bottom[0]->height();
int W = bottom[0]->width();
// fill spatial multiplier
spatial_sum_multiplier_vecs[k].reset(new Blob<float>(1, 1, H, W));
float* spatial_multiplier_data = spatial_sum_multiplier_vecs[k]->mutable_cpu_data();
caffe_set(spatial_sum_multiplier_vecs[k]->count(), float(1), spatial_multiplier_data);
// fill batch multiplier
batch_sum_multiplier_vecs[k].reset(new Blob<float>(N, 1, 1, 1));
float* batch_multiplier_data = batch_sum_multiplier_vecs[k]->mutable_cpu_data();
caffe_set(batch_sum_multiplier_vecs[k]->count(), float(1), batch_multiplier_data);
// x_norm
//x_norm_vecs[k].reset(new Blob<float>(N, C, H, W));
// mean
//spatial_mean_vecs[k].reset(new Blob<float>(N, C, 1, 1));
batch_mean_vecs[k].reset(new Blob<float>(1, C, 1, 1));
float* batch_mean_data = batch_mean_vecs[k]->mutable_cpu_data();
caffe_set(batch_mean_vecs[k]->count(), float(0), batch_mean_data);
// variance
//spatial_variance_vecs[k].reset(new Blob<float>(N, C, 1, 1));
batch_variance_vecs[k].reset(new Blob<float>(1, C, 1, 1));
float* batch_variance_data = batch_variance_vecs[k]->mutable_cpu_data();
caffe_set(batch_variance_vecs[k]->count(), float(0), batch_variance_data);
// buffer blob
//buffer_blob_vecs[k].reset(new Blob<float>(N, C, H, W));
}
LOG(INFO) << "Estimate batch norm and variance from training data for inference!";
for (int i = 0; i < iterations; ++i) {
//LOG(INFO) << "iter: " << i;
caffe_net.ForwardPrefilled();
//LOG(INFO) << "wtf1111";
// batch normalization for each BatchNormLayer
for (int k = 0; k < num_bn_layers; ++k) {
//LOG(INFO) << "bn layer: " << k;
const vector<Blob<float>*>& bottom = bottom_vecs[bn_layers[k]];
//LOG(INFO) << "processing: " << layers[bn_layers[k]]->layer_param().name();
// spatial mean & variance
Blob<float> spatial_mean, spatial_variance;
// batch mean & variance
Blob<float> batch_mean, batch_variance;
// buffer blob
Blob<float> buffer_blob;
// x_norm
Blob<float> x_norm;
// x_sum_multiplier is used to carry out sum using BLAS
const shared_ptr<Blob<float> > spatial_sum_multiplier = spatial_sum_multiplier_vecs[k];
const shared_ptr<Blob<float> > batch_sum_multiplier = batch_sum_multiplier_vecs[k];
// dimension
int N = bottom[0]->num();
int C = bottom[0]->channels();
int H = bottom[0]->height();
int W = bottom[0]->width();
// x_norm
x_norm.Reshape(N, C, H, W);
// mean
spatial_mean.Reshape(N, C, 1, 1);
batch_mean.Reshape(1, C, 1, 1);
// variance
spatial_variance.Reshape(N, C, 1, 1);
batch_variance.Reshape(1, C, 1, 1);
// buffer blod
buffer_blob.Reshape(N, C, H, W);
const float* const_bottom_data = bottom[0]->gpu_data();
//LOG(INFO) << "wtf2222";
// put the squares of bottom into buffer_blob_
caffe::caffe_gpu_powx(bottom[0]->count(), const_bottom_data, float(2),
buffer_blob.mutable_gpu_data());
// computes variance using var(X) = E(X^2) - (EX)^2
// EX across spatial
caffe::caffe_gpu_gemv<float>(CblasNoTrans, N * C, H * W, float(1. / (H * W)), const_bottom_data,
spatial_sum_multiplier->gpu_data(), float(0), spatial_mean.mutable_gpu_data());
// EX across batch
caffe::caffe_gpu_gemv<float>(CblasTrans, N, C, float(1. / N), spatial_mean.gpu_data(),
batch_sum_multiplier->gpu_data(), float(0), batch_mean.mutable_gpu_data());
/******** update E[X] for whole data ***********/
caffe::caffe_gpu_axpy<float>(C, float(1. / iterations), batch_mean.gpu_data(), batch_mean_vecs[k]->mutable_gpu_data());
// E(X^2) across spatial
caffe::caffe_gpu_gemv<float>(CblasNoTrans, N * C, H * W, float(1. / (H * W)),
buffer_blob.gpu_data(),
spatial_sum_multiplier->gpu_data(), float(0), spatial_variance.mutable_gpu_data());
// E(X^2) across batch
caffe::caffe_gpu_gemv<float>(CblasTrans, N, C, float(1. / N), spatial_variance.gpu_data(),
batch_sum_multiplier->gpu_data(), float(0), batch_variance.mutable_gpu_data());
caffe::caffe_gpu_powx(batch_mean.count(), batch_mean.gpu_data(), float(2),
buffer_blob.mutable_gpu_data()); // (EX)^2
caffe::caffe_gpu_sub(batch_mean.count(), batch_variance.gpu_data(), buffer_blob.gpu_data(),
batch_variance.mutable_gpu_data()); // variance
/******** update E[X] for whole data ***********/
caffe::caffe_gpu_axpy<float>(C, float(1. / (iterations - 1.)), batch_variance.gpu_data(), batch_variance_vecs[k]->mutable_gpu_data());
//LOG(INFO) << "wtf3333";
}
//LOG(INFO) << "wtf4444";
for (int j = 0; j < batchsize; ++j){
if (img_idx < numdata) {
// process each data
++img_processed_idx;
}
++img_idx;
}
//LOG(INFO) << "wtf5555";
if (i % (int)(0.1*iterations) == 0) {
LOG(INFO) << float(i) / float(iterations) * 100 << "%";
}
//LOG(INFO) << "wtf6666";
}
LOG(INFO) << "100%";
LOG(INFO) << "# of imgs (read): " << img_idx << ", # of imgs (processed): " << img_processed_idx;
/***************************** do prediction *****************************/
// delete training net
delete caffe_net_ptr;
// Instantiate the caffe net.
Net<float> caffe_test_net(FLAGS_test_model, caffe::TEST);
//NetParameter param;
//ReadNetParamsFromTextFileOrDie(FLAGS_test_model, ¶m);
//caffe_net.Init(param);
//caffe_net.CopyTrainedLayersFrom(FLAGS_weights);
caffe_test_net.CopyTrainedLayersFrom(FLAGS_weights);
// Calculate iterations
/*int*/ iterations = -1, numdata = -1, batchsize = -1;
const vector<shared_ptr<Layer<float> > >& test_layers = caffe_test_net.layers();
LOG(INFO) << "# of layers " << (int)test_layers.size();
for (int i = 0; i < test_layers.size(); ++i) {
const caffe::string& layername = test_layers[i]->layer_param().name();
LOG(INFO) << std::setfill(' ') << std::setw(10) << layername << " " << test_layers[i]->layer_param().type();
}
LOG(INFO) << "layer type: " << test_layers[0]->layer_param().type();
//switch (test_layers[0]->layer_param().type()) {
if (test_layers[0]->layer_param().type() == "Data" ||
test_layers[0]->layer_param().type() == "CompactData") {//case 5: {// DATA
batchsize = test_layers[0]->layer_param().data_param().batch_size();
//LOG(INFO) << "batch_size: " << batch_size;
int backend = (int)test_layers[0]->layer_param().data_param().backend();
LOG(INFO) << "backend (LEVELDB: 0, LMDB:1): " << backend;
if (backend == 1) { // LMDB
MDB_env* mdb_env;
MDB_stat mdb_mst;
CHECK_EQ(mdb_env_create(&mdb_env), MDB_SUCCESS) << "mdb_env_create failed";
CHECK_EQ(mdb_env_set_mapsize(mdb_env, 1099511627776), MDB_SUCCESS); // 1TB
CHECK_EQ(mdb_env_open(mdb_env,
test_layers[0]->layer_param().data_param().source().c_str(),
MDB_RDONLY|MDB_NOTLS, 0664), MDB_SUCCESS) << "mdb_env_open failed";
(void)mdb_env_stat(mdb_env, &mdb_mst);
//LOG(INFO) << "FINALLY!!! # of images: " << mdb_mst.ms_entries;
numdata = mdb_mst.ms_entries;
} else { // LEVELDB
LOG(INFO) << "LEVELDB is currently not supported. sorry :)";
return 0;
}
}
else if (test_layers[0]->layer_param().type() == "ImageData") { //case 12: { // IMAGE_DATA
batchsize = test_layers[0]->layer_param().image_data_param().batch_size();
LOG(INFO) << "batch_size: " << batchsize;
unsigned int number_of_lines = 0;
FILE *infile = fopen(test_layers[0]->layer_param().image_data_param().source().c_str(), "r");
int ch;
while (EOF != (ch=getc(infile)))
if ('\n' == ch)
++number_of_lines;
//printf("%u\n", number_of_lines);
numdata = (int)number_of_lines;
}
//case 43: { // IMAGE_DATA_AFFINE
// batchsize = test_layers[0]->layer_param().image_data_affine_param().batch_size();
// LOG(INFO) << "batch_size: " << batchsize;
// unsigned int number_of_lines = 0;
// FILE *infile = fopen(test_layers[0]->layer_param().image_data_affine_param().source().c_str(), "r");
// int ch;
// while (EOF != (ch=getc(infile)))
// if ('\n' == ch)
// ++number_of_lines;
// //printf("%u\n", number_of_lines);
// numdata = (int)number_of_lines;
// break;
//}
//case 44: { // IMAGE_DATA_MULTIPLE_INFERENCE
// batchsize = test_layers[0]->layer_param().image_data_multi_infer_param().batch_size();
// LOG(INFO) << "batch_size: " << batchsize;
// unsigned int number_of_lines = 0;
// FILE *infile = fopen(test_layers[0]->layer_param().image_data_multi_infer_param().source().c_str(), "r");
// int ch;
// while (EOF != (ch=getc(infile)))
// if ('\n' == ch)
// ++number_of_lines;
// //printf("%u\n", number_of_lines);
// numdata = (int)number_of_lines;
// break;
//}
else { //default:
LOG(INFO) << "predict.cpp assumes test_layers[0] is either DATA or IMAGE_DATA.";
return 0;
}
if (batchsize == -1 || numdata == -1) {
LOG(INFO) << "something wrong in reading # of data and batchsize.";
return 0;
} else {
LOG(INFO) << "num data: " << numdata << ", batchsize: " << batchsize;
}
iterations =(int)( (float)numdata / (float)batchsize ) + 1;
LOG(INFO) << "# of iterations " << iterations;
//LOG(INFO) << "Running for " << FLAGS_iterations << " iterations.";
int k_tmp = 0;
for (int i = 0; i < test_layers.size(); ++i) {
if ("BatchNorm" == test_layers[i]->layer_param().type() ||
"BN" == test_layers[i]->layer_param().type()) {
bn_layers[k_tmp] = i;
LOG(INFO) << std::setfill(' ') << std::setw(10) << test_layers[i]->layer_param().name() << " (" << bn_layers[k_tmp]+1 << " th layer)";
k_tmp++;
}
}
CHECK_EQ(k_tmp, num_bn_layers);
////////////assigning batch mean and batch variance.
const vector<vector<Blob<float>*> >& bottom_vecs_test = caffe_test_net.bottom_vecs();
for (int k = 0; k < num_bn_layers; ++k) {
if ("BatchNorm" == test_layers[bn_layers[k]]->layer_param().type()) { // Resize if BatchNorm (else BN)
// Get bottoms
const vector<Blob<float>*>& bottom = bottom_vecs_test[bn_layers[k]];
// Get dimension
int C = bottom[0]->channels();
// Reshape for BatchNorm Layer
vector<int> sz;
sz.push_back(C);
batch_mean_vecs[k]->Reshape(sz);
batch_variance_vecs[k]->Reshape(sz);
}
// Assign (global) batch mean and variance.
const shared_ptr<BatchNormLayer<float> > layer =
dynamic_pointer_cast<BatchNormLayer<float> >(test_layers[bn_layers[k]]);
layer->set_batch_mean_and_batch_variance(
*batch_mean_vecs[k].get(), *batch_variance_vecs[k].get());
//Blob<float>& batch_mean_tmp = layer->batch_mean();
//LOG(INFO) << "layer->batch_mean_vecs_.count(): " << batch_mean_tmp.count()
// << ", batch_mean_vects" << batch_mean_vecs[k]->count();
}
// // Eval test accuracy
// vector<Blob<float>* > bottom_vec;
// vector<int> test_score_output_id;
// vector<float> test_score;
// float loss = 0;
// for (int i = 0; i < iterations; ++i) {
// float iter_loss;
// const vector<Blob<float>*>& result =
// caffe_test_net.Forward(bottom_vec, &iter_loss);
// loss += iter_loss;
// int idx = 0;
// for (int j = 0; j < result.size(); ++j) {
// const float* result_vec = result[j]->cpu_data();
// for (int k = 0; k < result[j]->count(); ++k, ++idx) {
// const float score = result_vec[k];
// if (i == 0) {
// test_score.push_back(score);
// test_score_output_id.push_back(j);
// } else {
// test_score[idx] += score;
// }
// const std::string& output_name = caffe_test_net.blob_names()[
// caffe_test_net.output_blob_indices()[j]];
// LOG(INFO) << "Batch " << i << ", " << output_name << " = " << score;
// }
// }
// }
// loss /= iterations;
// LOG(INFO) << "Loss: " << loss;
// for (int i = 0; i < test_score.size(); ++i) {
// const std::string& output_name = caffe_test_net.blob_names()[
// caffe_test_net.output_blob_indices()[test_score_output_id[i]]];
// const float loss_weight =
// caffe_test_net.blob_loss_weights()[caffe_test_net.output_blob_indices()[i]];
// std::ostringstream loss_msg_stream;
// const float mean_score = test_score[i] / iterations;
// if (loss_weight) {
// loss_msg_stream << " (* " << loss_weight
// << " = " << loss_weight * mean_score << " loss)";
// }
// LOG(INFO) << output_name << " = " << mean_score << loss_msg_stream.str();
// }
// Write predction probability to txt file
FILE *prediction_file;
prediction_file = fopen(FLAGS_outfile.c_str(), "w");
if (!prediction_file) {
printf("Please specify the label list file. For example, prediction.txt.\n");
return 0;
}
//printf("# of iterations: %d\n", FLAGS_iterations);
LOG(INFO) << "Start prediction";
LOG(INFO) << "target_blob (to be printed): " << FLAGS_target_blob;
/*int*/ img_idx = 0, img_processed_idx = 0;
for (int i = 0; i < iterations; ++i) {
//printf("iter: %d\n", i);
caffe_test_net.ForwardPrefilled();
const Blob<float>* label = CHECK_NOTNULL(caffe_test_net.blob_by_name("label").get());
const Blob<float>* prob = CHECK_NOTNULL(caffe_test_net.blob_by_name(FLAGS_target_blob).get());
CHECK_EQ(prob->shape(0), label->shape(0));
CHECK_EQ(prob->shape(1), num_classes);
int batchsize = prob->shape(0);
//int num_classes = prob->shape(1);
//printf("batchsize: %d, num_classes: %d\n", batchsize, num_classes);
// prediction probs num_classes x batchsize
const float* prob_vec = prob->cpu_data();
for (int j = 0; j < batchsize; ++j){
if (img_idx < numdata) {
fprintf(prediction_file, "%e", prob_vec[j*num_classes]);
for (int k = 1; k < num_classes; ++k) {
fprintf(prediction_file, ",%e", prob_vec[j*num_classes+k]);
}
fprintf(prediction_file, "\n");
++img_processed_idx;
}
++img_idx;
}
if (i % (int)(0.1*iterations) == 0) {
LOG(INFO) << (float)i / (float)iterations * 100 << "%";
}
}
LOG(INFO) << "100%";
LOG(INFO) << "# of imgs (read): " << img_idx << ", # of imgs (processed): " << img_processed_idx;
fclose(prediction_file);
return 0;
}