Skip to content

Latest commit

 

History

History

msk-serverless-firehose-s3-stack

Amazon MSK Serverless - Managed Data Delivery from Apache Kafka to Amazon S3 CDK Python project!

msk-serverless-firehose-s3-arch

This is a CDK Python project to show how to continuously load data from an Apache Kafka cluster to Amazon Simple Storage Service (Amazon S3).

The cdk.json file tells the CDK Toolkit how to execute your app.

This project is set up like a standard Python project. The initialization process also creates a virtualenv within this project, stored under the .venv directory. To create the virtualenv it assumes that there is a python3 (or python for Windows) executable in your path with access to the venv package. If for any reason the automatic creation of the virtualenv fails, you can create the virtualenv manually.

To manually create a virtualenv on MacOS and Linux:

$ python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

If you are a Windows platform, you would activate the virtualenv like this:

% .venv\Scripts\activate.bat

Once the virtualenv is activated, you can install the required dependencies.

(.venv) $ pip install -r requirements.txt

Deploy

Before synthesizing the CloudFormation, you should set approperly the cdk context configuration file, cdk.context.json.

For example:

{
  "msk_cluster_name": "demo-msk-serverless",
  "firehose": {
    "buffering_hints": {
      "intervalInSeconds": 300,
      "sizeInMBs": 100
    },
    "topic_name": "ev_stream_data"
  }
}

At this point you can now synthesize the CloudFormation template for this code.

(.venv) $ export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-identity --query Account --output text)
(.venv) $ export CDK_DEFAULT_REGION=$(aws configure get region)
(.venv) $ cdk synth --all

To add additional dependencies, for example other CDK libraries, just add them to your setup.py file and rerun the pip install -r requirements.txt command.

We can provision each CDK stack one at a time like this:

Step 1: List all CDK Stacks

(.venv) $ cdk list
MSKServerlessVpcStack
MSKServerlessStack
MSKClusterPolicyForFirehose
MSKClientEC2InstanceStack
MSKServerlesstoS3AsFirehoseDestinationStack
FirehosefromMSKServerlesstoS3Stack

Step 2: Create MSK cluster

(.venv) $ cdk deploy --require-approval never MSKServerlessVpcStack \
                                              MSKServerlessStack \
                                              MSKClusterPolicyForFirehose

Once MSK Serverless cluster has been successfully created, you should see a msk cluster policy similar to the following example on the terminal.

$ aws kafka get-cluster-policy --cluster-arn arn:aws:kafka:us-east-1:123456789012:cluster/demo-msk-serverless/a4c4ef8f-1cd4-4ca2-aa5b-7d215b523b18-s1
{
  "CurrentVersion": "KTVPDKIKX0DER",
  "Policy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"Service\":\"firehose.amazonaws.com\"},\"Action\":\"kafka:CreateVpcConnection\",\"Resource\":\"arn:aws:kafka:us-east-1:123456789012:cluster/demo-msk-serverless/a4c4ef8f-1cd4-4ca2-aa5b-7d215b523b18-s1\"}]}"
}

Step 3: Set up an EC2 Instance to access MSK Cluster

(.venv) $ cdk deploy --require-approval never MSKClientEC2InstanceStack

Once MSK Serverless cluster has been successfully created, proceed with the remaining steps.

Step 4: Create a Kafka Topic

(1) Get Broker servers information

$ export MSK_SERVERLESS_CLUSTER_ARN=$(aws kafka list-clusters-v2 | jq -r '.ClusterInfoList[] | select(.ClusterName == "your-msk-cluster-name") | .ClusterArn')
$ aws kafka get-bootstrap-brokers --cluster-arn $MSK_SERVERLESS_CLUSTER_ARN
{
   "BootstrapBrokerStringSaslIam": "boot-mcde48dt.c2.kafka-serverless.{regon-name}.amazonaws.com:9098"
}

(2) Connect the MSK client EC2 Host.

You can connect to an EC2 instance using the EC2 Instance Connect CLI.
Install ec2instanceconnectcli python package and Use the mssh command with the instance ID as follows.

$ sudo pip install ec2instanceconnectcli
$ mssh ec2-user@i-001234a4bf70dec41EXAMPLE

(3) Create an Apache Kafka topic After connect your EC2 Host, you use the client machine to create a topic on the cluster. Run the following command to create a topic called ev_stream_data.

[ec2-user@ip-172-31-0-180 ~]$ export PATH=$HOME/opt/kafka/bin:$PATH
[ec2-user@ip-172-31-0-180 ~]$ export BS={BootstrapBrokerStringSaslIam}
[ec2-user@ip-172-31-0-180 ~]$ kafka-topics.sh --bootstrap-server $BS \
                                              --command-config client.properties \
                                              --create \
                                              --topic ev_stream_data \
                                              --partitions 3 \
                                              --replication-factor 2

client.properties is a property file containing configs to be passed to Admin Client. This is used only with --bootstrap-server option for describing and altering broker configs.
For more information, see Getting started using MSK Serverless clusters - Step 3: Create a client machine

[ec2-user@ip-172-31-0-180 ~]$ cat client.properties
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler

Step 5: Create a S3 bucket for Kinesis Data Firehose's destination to store incoming data from MSK

(.venv) $ cdk deploy --require-approval never MSKServerlesstoS3AsFirehoseDestinationStack

Step 6: Create a Kinesis Data Firehose

(.venv) $ cdk deploy --require-approval never FirehosefromMSKServerlesstoS3Stack

The above command creates the Kinesis Data Firehose with the following configurations:

(1) Choose source and destination

  • Source: Amazon MSK
  • Destination: Amazon S3

(2) Source settings

  • Amazon MSK cluster connectivity: Private bootstrap brokers
  • Amazon MSK Cluster:
    {msk-cluster-name (e.g., demo-msk-serverless)}
  • Topic:
    {kafka-topic-name (e.g., ev_stream_data)}

(3) Delivery stream name

  • Delivery stream name: demo-msk-serverless-to-s3

(4) Destination settings

  • S3 bucket:
    s3://msk-serverless-firehose-s3-us-east-1-{random-identifier}
  • S3 bucket prefix:
    json-data/year=!{timestamp:yyyy}/month=!{timestamp:MM}/day=!{timestamp:dd}/hour=!{timestamp:HH}/
  • S3 bucket error output prefix:
    error/year=!{timestamp:yyyy}/month=!{timestamp:MM}/day=!{timestamp:dd}/hour=!{timestamp:HH}/!{firehose:error-output-type}

Run Test

  1. Produce and consume data

    (1) To produce messages

    Run the following command to generate messages into the topic on the cluster.

    [ec2-user@ip-172-31-0-180 ~]$ python3 gen_fake_data.py | kafka-console-producer.sh \
       --bootstrap-server $BS --producer.config client.properties --topic ev_stream_data
    

    (2) To consume messages

    Keep the connection to the client machine open, and then open a second, separate connection to that machine in a new window.

    [ec2-user@ip-172-31-0-180 ~]$ kafka-console-consumer.sh \
       --bootstrap-server $BS \
       --consumer.config client.properties \
       --topic ev_stream_data \
       --from-beginning
    

    You start seeing the messages you entered earlier when you used the console producer command. Enter more messages in the producer window, and watch them appear in the consumer window.

  2. Check streaming data in S3

    After 5~7 minutes, you can see that the streaming data have been delivered from MSK to S3.

    For example, msk-serverless-firehose-s3 msk-serverless-firehose-s3

Clean Up

Delete the CloudFormation stacks by running the below command.

(.venv) $ cdk destroy --all

Useful commands

  • cdk ls list all stacks in the app
  • cdk synth emits the synthesized CloudFormation template
  • cdk deploy deploy this stack to your default AWS account/region
  • cdk diff compare deployed stack with current state
  • cdk docs open CDK documentation

Enjoy!

References

Kafka Commands CheatSheet

  • Set up client.properties

    $ cat client.properties
    security.protocol=SASL_SSL
    sasl.mechanism=AWS_MSK_IAM
    sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
    sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
    

    ℹ️ client.properties is a property file containing configs to be passed to Admin Client. This is used only with --bootstrap-server option for describing and altering broker configs.
    For more information, see Getting started using MSK Serverless clusters - Step 3: Create a client machine

  • Get Bootstrap server information

    $ aws kafka get-bootstrap-brokers --cluster-arn msk_cluster_arn
    $ export BS={BootstrapBrokerStringSaslIam}
    
  • List Kafka toipics

    $ kafka-topics.sh --bootstrap-server $BS \
                      --command-config client.properties \
                      --list
    
  • Create a Kafka toipic

    $ kafka-topics.sh --bootstrap-server $BS \
                      --command-config client.properties \
                      --create \
                      --topic topic_name \
                      --partitions 3 \
                      --replication-factor 2
    
  • Consume records from a Kafka toipic

    $ kafka-console-consumer.sh --bootstrap-server $BS \
                                --consumer.config client.properties \
                                --topic topic_name \
                                --from-beginning
    
  • Produce records into a Kafka toipic

    $ kafka-console-producer.sh --bootstrap-server $BS \
                                --producer.config client.properties \
                                --topic topic_name