forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython_variable_indexing.cpp
454 lines (417 loc) · 16.6 KB
/
python_variable_indexing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#include <torch/csrc/autograd/python_variable_indexing.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/python_compat.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/utils/tensor_types.h>
#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/TensorIndexing.h>
#include <ATen/TracerMode.h>
#include <c10/core/TensorOptions.h>
#include <c10/util/irange.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <vector>
#include <tuple>
using namespace at;
using namespace torch::autograd::utils;
namespace torch { namespace autograd {
Py_ssize_t THPVariable_length(PyObject* self) {
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
py::object ret = py::reinterpret_steal<py::object>(handle_torch_function(self, "__len__"));
Py_ssize_t length = PyLong_AsSsize_t(ret.ptr());
if (PyErr_Occurred()) {
throw python_error();
}
return length;
}
const auto& self_ = THPVariable_Unpack(self);
if (self_.dim() == 0) {
return 0;
}
return (Py_ssize_t)self_.size(0);
END_HANDLE_TH_ERRORS_RET(-1)
}
// We allow indexing by integers, slices, ellipsis, None, Variables,
// and tuples of those types. We also handle bools as if they were a
// Variable[ByteTensor].
static inline int64_t count_specified_dimensions(PyObject* index) {
// Count the number of indexed dimensions (everything but ellipsis and None)
// -1 is a sentinel for __torch_function__
int64_t count = 0;
auto size = PyTuple_GET_SIZE(index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
for (Py_ssize_t i = 0; i < size; i++) {
PyObject* obj = PyTuple_GET_ITEM(index, i); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
if (!THPVariable_CheckExact(obj) && check_has_torch_function(obj)) return -1;
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
const auto& var_scalar_type = var.scalar_type();
if (var_scalar_type == kByte || var_scalar_type == kBool) {
count += var.dim();
} else {
count++;
}
} else if (obj != Py_None && obj != Py_Ellipsis && obj != Py_True && obj != Py_False) { // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
count++;
}
}
return count;
}
[[noreturn]]
static inline void invalid_index(PyObject* obj) {
throw IndexError(
"only integers, slices (`:`), ellipsis (`...`), None and long or byte "
"Variables are valid indices (got %s)", Py_TYPE(obj)->tp_name);
}
static inline Variable sequenceToVariable(c10::TensorOptions options, PyObject* seq) {
return torch::utils::indexing_tensor_from_data(options, kLong, c10::nullopt, seq);
}
static inline Variable valueToTensor(c10::TensorOptions options, PyObject* value, const at::Device& device) {
if (THPVariable_Check(value)) {
return THPVariable_Unpack(value);
}
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;
if (THPUtils_checkLong(value) || PyBool_Check(value)) {
return at::indexing::scalarToTensor(Scalar(THPUtils_unpackLong(value)), options, device);
}
if (PyFloat_Check(value)) {
return at::indexing::scalarToTensor(Scalar(THPUtils_unpackDouble(value)), options, device);
}
if (PyComplex_Check(value)) {
return at::indexing::scalarToTensor(Scalar(THPUtils_unpackComplexDouble(value)), options, device);
}
throw TypeError(
"can't assign a %s to a %s",
Py_TYPE(value)->tp_name,
torch::utils::options_to_string(options).c_str());
}
static inline void checkUnpackSlice(PyObject* index, Py_ssize_t* start_ptr, Py_ssize_t* stop_ptr, Py_ssize_t* step_ptr) {
if (!THPUtils_unpackSlice(index, start_ptr, stop_ptr, step_ptr)) {
throw python_error();
}
}
static inline void recordSliceTrace(PyObject* obj) {
PySliceObject* sliceobj = (PySliceObject*)obj;
if (THPVariable_Check(sliceobj->start)) {
torch::jit::tracer::ArgumentStash::stashValue(std::string("start"), 1, THPVariable_Unpack(sliceobj->start), torch::jit::IntType::get());
}
if (THPVariable_Check(sliceobj->stop)) {
torch::jit::tracer::ArgumentStash::stashValue(std::string("end"), 1, THPVariable_Unpack(sliceobj->stop), torch::jit::IntType::get());
}
if (THPVariable_Check(sliceobj->step)) {
torch::jit::tracer::ArgumentStash::stashValue(std::string("step"), 1, THPVariable_Unpack(sliceobj->step), torch::jit::IntType::get());
}
}
static inline void recordSelectTrace(const Tensor& index_tensor) {
torch::jit::tracer::ArgumentStash::stashValue(std::string("index"), 1, index_tensor, torch::jit::IntType::get());
}
static inline Variable applySlicing(
const Variable& self,
PyObject* index,
variable_list& outIndices,
bool is_tracing,
const at::Device& self_device,
const IntArrayRef& self_sizes,
int64_t specified_dims) {
int64_t size = PyTuple_GET_SIZE(index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
int64_t dim = 0;
if (specified_dims > (int64_t)self_sizes.size()) {
throw IndexError("too many indices for tensor of dimension %d", (int)(self_sizes.size()));
}
Variable result = self;
for(const auto i : c10::irange(size)) {
PyObject* obj = PyTuple_GET_ITEM(index, i); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
result = at::indexing::handleDimInMultiDimIndexing(
/*prev_dim_result=*/result,
/*original_tensor=*/self,
/*index=*/([&]() {
if (THPUtils_checkLong(obj)) {
if (is_tracing && THPVariable_Check(obj)) {
recordSelectTrace(THPVariable_Unpack(obj));
}
return at::indexing::TensorIndex(THPUtils_unpackLong(obj));
} else if (PySlice_Check(obj)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Py_ssize_t start, stop, step;
checkUnpackSlice(obj, &start, &stop, &step);
if (is_tracing) {
recordSliceTrace(obj);
}
return at::indexing::TensorIndex(at::indexing::Slice(start, stop, step));
} else if (obj == Py_Ellipsis) {
return at::indexing::TensorIndex(at::indexing::Ellipsis);
} else if (obj == Py_None) {
return at::indexing::TensorIndex(at::indexing::None);
} else if (PyBool_Check(obj)) {
return at::indexing::TensorIndex(obj == Py_True);
} else if (THPVariable_Check(obj)) {
Tensor tensor = THPVariable_Unpack(obj);
if (is_tracing) {
auto scalar_type = tensor.scalar_type();
if (tensor.dim() == 0 && at::isIntegralType(scalar_type, /*includeBool=*/false) && scalar_type != at::kByte) {
recordSelectTrace(tensor);
}
}
return at::indexing::TensorIndex(std::move(tensor));
} else if (PySequence_Check(obj)) {
return at::indexing::TensorIndex(sequenceToVariable(self.options(), obj));
} else {
auto idx = THPObjectPtr(PyNumber_Index(obj));
if (!idx) {
PyErr_Clear();
invalid_index(obj);
}
if (is_tracing && THPVariable_Check(idx)) {
recordSelectTrace(THPVariable_Unpack(idx));
}
return at::indexing::TensorIndex(THPUtils_unpackLong(idx));
}
})(),
/*dim_ptr=*/&dim,
/*specified_dims_ptr=*/&specified_dims,
/*real_dim=*/i,
/*outIndices=*/outIndices,
// See NOTE [ Setting `disable_slice_optimization` when calling C++ tensor indexing functions from Python ]
/*disable_slice_optimization=*/is_tracing,
/*original_tensor_device=*/self_device,
/*prev_dim_result_sizes=*/result.sizes());
}
return result;
}
static inline bool treatSequenceAsTuple(PyObject* index) {
if (PyTuple_Check(index)) {
return true;
}
if (THPVariable_Check(index)) {
return false;
}
if (!PySequence_Check(index)) {
return false;
}
// This uses a heuristics from NumPy for determining whether to treat
// non-tuple sequences as if they were a tuple. From the NumPy code comments:
//
// "At this point, we're left with a non-tuple, non-array, sequence:
// typically, a list. We use some somewhat-arbitrary heuristics from here
// onwards to decided whether to treat that list as a single index, or a
// list of indices. Backwards compatibility only takes effect for short
// sequences - otherwise we treat it like any other scalar."
auto n = PySequence_Size(index);
if (n < 0) {
// Negative size indicates a Python error in the PySequence_Size call.
PyErr_Clear();
return false;
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
if (n >= 32) {
return false;
}
for (Py_ssize_t i = 0; i < n; i++) {
auto obj = THPObjectPtr{PySequence_GetItem(index, i)};
if (!obj.get()) {
PyErr_Clear();
return false;
}
if (THPVariable_Check(obj.get()) || PySequence_Check(obj.get()) || PySlice_Check(obj.get())) {
return true;
}
if (obj.get() == Py_Ellipsis || obj.get() == Py_None) {
return true;
}
}
return false;
}
static inline THPObjectPtr wrapTuple(PyObject* index) {
THPObjectPtr res;
if (treatSequenceAsTuple(index)) {
res = PySequence_Tuple(index);
} else {
res = PyTuple_Pack(1, index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
}
if (!res) throw python_error();
return res;
}
// NOTE: Here is the dispatch structure for `THPVariable_getitem`:
//
// 1. Python 1-D getter calls C++ `at::indexing::get_item` after
// converting Python index to C++ TensorIndex.
//
// 2. Python N-D getter calls C++ `at::indexing::handleDimInMultiDimIndexing`
// for each dim, after converting Python index to C++ TensorIndex. If advanced
// indexing is needed, it calls C++ `at::indexing::dispatch_index`.
PyObject* THPVariable_getitem(PyObject* self, PyObject* index) {
HANDLE_TH_ERRORS
if (!THPVariable_CheckExact(self) && check_has_torch_function(self)) {
return handle_torch_function_indexing(self, index);
}
const auto& self_ = THPVariable_Unpack(self);
OptionalDeviceGuard device_guard(device_of(self_));
// handle simple types: none, ellipsis
if (index == Py_None) {
return THPVariable_Wrap(
at::indexing::get_item(self_, {at::indexing::TensorIndex(at::indexing::None)}));
} else if (index == Py_Ellipsis) {
return THPVariable_Wrap(
at::indexing::get_item(self_, {at::indexing::TensorIndex(at::indexing::Ellipsis)}));
}
bool is_tracing = torch::jit::tracer::isTracing();
// handle simple types: integers, slices, bool
if (THPUtils_checkLong(index)) {
if (is_tracing && THPVariable_Check(index)) {
recordSelectTrace(THPVariable_Unpack(index));
}
return THPVariable_Wrap(
at::indexing::get_item(self_, {at::indexing::TensorIndex(THPUtils_unpackLong(index))}));
} else if (PySlice_Check(index)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Py_ssize_t start, stop, step;
checkUnpackSlice(index, &start, &stop, &step);
if (is_tracing) {
recordSliceTrace(index);
}
return THPVariable_Wrap(
at::indexing::get_item(self_, {at::indexing::TensorIndex(at::indexing::Slice(start, stop, step))}));
} else if (index == Py_False || index == Py_True) {
return THPVariable_Wrap(([&]() {
pybind11::gil_scoped_release no_gil;
return at::indexing::get_item(self_, {at::indexing::TensorIndex(index == Py_True)});
})());
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
int64_t specified_dims = count_specified_dimensions(holder.get());
if (specified_dims == -1) {
return handle_torch_function_indexing(self, index);
}
Variable sliced = applySlicing(
self_, holder.get(), variableIndices, /*is_tracing=*/is_tracing, self_.device(), self_.sizes(), specified_dims);
if (variableIndices.empty()) {
if (sliced.is_same(self_)) {
// ensure we return a shallow copy for things like x[...]
sliced = at::alias(sliced);
}
return THPVariable_Wrap(std::move(sliced));
}
// indexing by tensors ("advanced" indexing)
return THPVariable_Wrap(([&]() {
pybind11::gil_scoped_release no_gil;
return at::indexing::dispatch_index(sliced, std::move(variableIndices));
})());
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// NOTE: Here is the dispatch structure for `THPVariable_setitem`:
//
// 1. Python 1-D setter calls C++ `at::indexing::set_item` after
// converting Python index to C++ TensorIndex.
//
// 2. Python N-D setter calls C++ `at::indexing::handleDimInMultiDimIndexing`
// for each dim, after converting Python index to C++ TensorIndex. If advanced
// indexing is needed, it calls C++ `at::indexing::dispatch_index_put_`.
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
HANDLE_TH_ERRORS
if (py_value == nullptr) {
throw TypeError("Tensor does not support deleting items");
}
if ((!THPVariable_CheckExact(self) && check_has_torch_function(self)) ||
(!THPVariable_CheckExact(py_value) && check_has_torch_function(py_value))) {
py::object ret = py::reinterpret_steal<py::object>(
handle_torch_function_indexing(self, index, py_value)
);
return 0;
}
const auto& self_ = THPVariable_Unpack(self);
if (self_.is_sparse())
{
throw TypeError("Cannot assign to a sparse tensor");
}
OptionalDeviceGuard device_guard(device_of(self_));
at::Device self_device = self_.device();
Variable value;
// TODO: This qint special case looks very suspicious...
if (isQIntType(self_.scalar_type())) {
value = valueToTensor(device(kCPU).dtype(kFloat), py_value, at::Device(kCPU));
} else if (self_device.is_cuda()) {
value = valueToTensor(self_.options(), py_value, at::Device(kCPU));
} else {
value = valueToTensor(self_.options(), py_value, self_device);
}
// handle simple types: ellipsis, none, bool
if (index == Py_False) { // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
// do nothing for false (technically we should check the size, but we don't have
// real 0-sized shapes.
return 0;
} else if (index == Py_Ellipsis) {
at::indexing::set_item(self_, {at::indexing::TensorIndex(at::indexing::Ellipsis)}, value);
return 0;
} else if (index == Py_None) {
at::indexing::set_item(self_, {at::indexing::TensorIndex(at::indexing::None)}, value);
return 0;
} else if (index == Py_True) {
at::indexing::set_item(self_, {at::indexing::TensorIndex(true)}, value);
return 0;
}
bool is_tracing = torch::jit::tracer::isTracing();
// handle simple types: integers, slices
if (THPUtils_checkLong(index)) {
if (is_tracing && THPVariable_Check(index)) {
recordSelectTrace(THPVariable_Unpack(index));
}
at::indexing::set_item(self_, {at::indexing::TensorIndex(THPUtils_unpackLong(index))}, value);
return 0;
} else if (PySlice_Check(index)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Py_ssize_t start, stop, step;
checkUnpackSlice(index, &start, &stop, &step);
if (is_tracing) {
recordSliceTrace(index);
}
// See NOTE [ Setting `disable_slice_optimization` when calling C++ tensor indexing functions from Python ]
at::indexing::set_item(
self_, {at::indexing::TensorIndex(at::indexing::Slice(start, stop, step))}, value, /*disable_slice_optimization=*/is_tracing);
return 0;
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
int64_t specified_dims = count_specified_dimensions(holder.get());
if (specified_dims == -1) {
py::object val = py::reinterpret_steal<py::object>(
handle_torch_function_indexing(self, index, py_value)
);
return 0;
}
Variable sliced = applySlicing(
self_, holder.get(), variableIndices, /*is_tracing=*/is_tracing, self_device, self_.sizes(), specified_dims);
if (variableIndices.empty()) {
at::indexing::copy_to(sliced, value);
return 0;
}
IntArrayRef valueSizes = value.sizes();
IntArrayRef slicedValueSizes = at::indexing::slicePrefix1sSize(valueSizes);
torch::autograd::Variable valuesSliced;
if (!valueSizes.equals(slicedValueSizes)) {
valuesSliced = value.view(slicedValueSizes);
} else {
valuesSliced = value;
}
{
pybind11::gil_scoped_release no_gil;
at::indexing::dispatch_index_put_(sliced, std::move(variableIndices), valuesSliced);
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
}} // namespace torch::autograd