forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython_variable.cpp
1829 lines (1650 loc) · 67.9 KB
/
python_variable.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Size.h>
#include <torch/csrc/Types.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_hook.h>
#include <torch/csrc/autograd/python_variable_indexing.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/generated/VariableType.h>
#include <torch/csrc/autograd/utils/error_messages.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <ATen/NamedTensorUtils.h>
#include <c10/core/DeviceType.h>
#include <c10/util/DeadlockDetection.h>
#include <c10/util/irange.h>
#include <torch/library.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/autograd/python_mode.h>
#include <ATen/ATen.h>
#include <pybind11/pybind11.h>
#include <structmember.h>
#include <cstdint>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
using namespace at;
using namespace torch;
using namespace torch::autograd;
namespace {
std::string concrete_name_fn(const c10::impl::PyInterpreter* self) {
std::stringstream ss;
ss << self;
return ss.str();
}
// NOTE [PyInterpreter::decref takes an `is_tensor` arg]
// Before calling PyInterpreter::decref, we must statically know if the
// pyobj is a Tensor or not.
// - If it is a tensor, we need to be careful about PyObject resurrection
// - If it is not a tensor, we can freely decref
// One alternative to this is using PyObject_IsInstance
// to get at this information. However, we don't want to risk an incorrect
// `__instancecheck__` changing the semantics here.
void concrete_decref_fn(const c10::impl::PyInterpreter* self, PyObject* pyobj, bool is_tensor) {
// Leak the pyobj if not initialized. This can happen if we are running
// exit handlers that are destructing tensors with residual (owned)
// PyObjects stored in them.
if (!Py_IsInitialized())
return;
pybind11::gil_scoped_acquire gil;
// Two possibilities:
// 1. We are decref-ing a tensor. Then we must be careful about
// PyObject resurrection (this only applies to Tensors, see THPVariable_clear).
// 2. We are decref-ing some other Python object. We don't do
// PyObject resurrection on non-Tensors, so we just carry on as usual
if (is_tensor && Py_REFCNT(pyobj) > 1) {
// It's still alive! This can happen if a weak ref resurrected
// the PyObject without flipping ownership. At this point it is
// too late to rescue the object, so just stub out the PyObject
// so that it fails on subsequent uses. Don't raise an error here;
// you're probably in a destructor.
TORCH_WARN(
"Deallocating Tensor that still has live PyObject references. "
"This probably happened because you took out a weak reference to "
"Tensor and didn't call _fix_weakref() after dereferencing it. "
"Subsequent accesses to this tensor via the PyObject will now fail."
);
((THPVariable*)pyobj)->cdata = MaybeOwned<Variable>();
}
Py_DECREF(pyobj);
};
c10::intrusive_ptr<TensorImpl> concrete_detach_fn(const c10::impl::PyInterpreter*, const c10::TensorImpl* self);
void concrete_dispatch_fn(
const c10::impl::PyInterpreter*,
const c10::OperatorHandle& op,
torch::jit::Stack* stack,
const std::shared_ptr<TorchDispatchTypeObject>& type);
class PyInterpreterHolder {
public:
PyInterpreterHolder()
: impl_(new c10::impl::PyInterpreter(
&concrete_name_fn,
&concrete_decref_fn,
&concrete_detach_fn,
&concrete_dispatch_fn)) {}
// NB: intentionally leaks the memory
~PyInterpreterHolder() {
impl_->disarm();
}
c10::impl::PyInterpreter* get() const noexcept {
return impl_;
}
private:
c10::impl::PyInterpreter* impl_;
};
PyInterpreterHolder self_interpreter;
} // anonymous namespace
c10::impl::PyInterpreter* getPyInterpreter() {
return self_interpreter.get();
}
namespace py = pybind11;
PyObject *THPVariableClass = nullptr;
PyObject *ParameterClass = nullptr;
static PyObject* THPVariable_NewWithVar(
PyTypeObject* type,
Variable _var,
c10::impl::PyInterpreterStatus status);
// clang-tidy gets confused by static const
static const char* VOLATILE_WARNING =
"volatile was removed and now has no effect. Use "
"`with torch.no_grad():` instead.";
static bool check_has_torch_dispatch(PyObject *obj) {
PyTypeObject *tp = Py_TYPE(obj);
return (
!THPVariable_CheckTypeExact(tp) &&
// TODO: test if Python key is disabled
PyObject_FastGetAttrString(obj, "__torch_dispatch__").ptr() != nullptr
);
}
// NOLINTNEXTLINE
static PyObject* device_to_py_class_ [static_cast<size_t>(c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)];
void registerPythonTensorClass(const std::string& device, PyObject* python_tensor_class) {
c10::Device dev(device);
TORCH_CHECK(dev.type() == kXLA, "Only the python class for XLA can be overriden");
if (device_to_py_class_[static_cast<size_t>(dev.type())] != nullptr) {
TORCH_WARN("Overriding a previously registered python class for ", dev.str());
}
device_to_py_class_[static_cast<size_t>(dev.type())] = python_tensor_class;
}
static PyObject* getPythonTensorClass(c10::Device d) {
return device_to_py_class_[static_cast<size_t>(d.type())];
}
// TODO: Make this take Variable by const reference
PyObject * THPVariable_Wrap(at::TensorBase var)
{
if (!var.defined()) {
Py_RETURN_NONE;
}
c10::optional<PyObject*> mb_obj =
var.unsafeGetTensorImpl()->check_pyobj(self_interpreter.get());
c10::impl::PyInterpreterStatus status;
if (mb_obj.has_value()) {
auto obj = *mb_obj;
if (obj) {
if (var.unsafeGetTensorImpl()->owns_pyobj()) {
// C++ owns the Python object; this implies there weren't any other
// owning references to the Python object. Since we're making the
// object "live" again on Python side, let's flip back the ownership
// (Python owns C++) as it would now be unsound to deallocate the C++
// object if all C++ references go to zero
var.unsafeGetTensorImpl()->set_owns_pyobj(false);
reinterpret_cast<THPVariable*>(obj)->cdata =
MaybeOwned<Variable>::owned(std::move(var));
// NB: incref is not necessary, because we are "stealing" the previous
// ownership from the Variable to return it here for the wrap
return obj;
}
Py_INCREF(obj);
return obj;
}
// TODO: a better invariant is that if we tagged, we MUST have a valid
// PyObject. That's PyObject preservation
// (https://github.com/pytorch/pytorch/pull/56017). Prior to this PR
// being a thing, the PyObject field will get cleared when all references
// to the Python object are removed.
status = c10::impl::PyInterpreterStatus::TAGGED_BY_US;
} else {
// Assumption: if a Tensor has been shared across threads, this induces
// a refcount bump. Therefore, if the use count 1, we are the sole thread
// with access to this tensor and no race is possible.
if (var.use_count() <= 1) {
status = c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED;
} else {
status = c10::impl::PyInterpreterStatus::MAYBE_UNINITIALIZED;
}
}
if (C10_LIKELY(var.device().type() != c10::kXLA)) {
return THPVariable_NewWithVar(
(PyTypeObject*)THPVariableClass, std::move(var), status);
}
if (auto clazz = getPythonTensorClass(var.device())) {
return THPVariable_NewWithVar(
(PyTypeObject*)clazz, std::move(var), status);
}
return THPVariable_NewWithVar(
(PyTypeObject*)THPVariableClass, std::move(var), status);
}
static int THPVariable_clear(THPVariable* self) {
Py_CLEAR(self->backward_hooks);
const auto& tensor = THPVariable_Unpack(self);
if (tensor.defined()) {
// Two situations to consider:
// PyObject -owns-> Tensor
// unsafeIsBorrowed() is FALSE. We're obligated to look through
// Tensor to break references. Clearing cdata must induce the
// destruction of the C++ Tensor. If there were other references
// to C++ tensor, the Python object would have been resurrected
// by flipping the ownership.
// Tensor -owns-> PyObject
// unsafeIsBorrowed() is TRUE. We're deallocating the PyObject
// because Tensor asked us to (it's already destructing).
if (!self->cdata.unsafeIsBorrowed()) {
// TODO: empirically, on OS X this assert appears to be untrue
// In test_py_tensors_multi_async_call - ProcessGroupRpcTestWithSpawn
// distributed/rpc/test_process_group_agent.py
//
// libc++abi.dylib: terminating with uncaught exception of type
// c10::Error: !tensor.unsafeGetTensorImpl()->owns_pyobj()INTERNAL ASSERT
// FAILED at "../torch/csrc/autograd/python_variable.cpp":171, please
// report a bug to PyTorch. Exception raised from THPVariable_clear at
// ../torch/csrc/autograd/python_variable.cpp:171 (most recent call
// first): frame #0: c10::Error::Error(c10::SourceLocation,
// std::__1::basic_string<char, std::__1::char_traits<char>,
// std::__1::allocator<char> >) + 98 (0x1158a0442 in libc10.dylib) frame
// #1: c10::detail::torchCheckFail(char const*, char const*, unsigned
// int, char const*) + 205 (0x11589ed3d in libc10.dylib) frame #2:
// c10::detail::torchInternalAssertFail(char const*, char const*,
// unsigned int, char const*, c10::detail::CompileTimeEmptyString) + 9
// (0x1141e3f89 in libtorch_python.dylib) frame #3:
// THPVariable_clear(THPVariable*) + 412 (0x1148a547c in
// libtorch_python.dylib) frame #4:
// THPVariable_subclass_dealloc(_object*) + 453 (0x1148a5035 in
// libtorch_python.dylib) frame #5: (anonymous
// namespace)::concrete_decref_fn(c10::impl::PyInterpreter const*,
// _object*) + 53 (0x1148a5ea5 in libtorch_python.dylib) frame #6:
// c10::TensorImpl::release_resources() + 182 (0x11588c4a6 in
// libc10.dylib) frame #7:
// c10::MaybeOwned<at::Tensor>::operator=(c10::MaybeOwned<at::Tensor>&&)
// + 91 (0x11488c11b in libtorch_python.dylib) frame #8:
// THPVariable_subclass_dealloc(_object*) + 607 (0x1148a50cf in
// libtorch_python.dylib) <omitting python frames> frame #47: start + 1
// (0x7fff6ffc7cc9 in libdyld.dylib) frame #48: 0x0 + 4 (0x4 in ???)
// TORCH_INTERNAL_ASSERT(!tensor.unsafeGetTensorImpl()->owns_pyobj());
if (auto grad_acc =
torch::autograd::impl::try_get_grad_accumulator(tensor)) {
grad_acc->pre_hooks().clear();
}
}
}
self->cdata = MaybeOwned<Variable>();
return 0;
}
// returns true if successfully rezzed; if so, cancel the
// rest of deallocation
static bool THPVariable_tryResurrect(THPVariable* self) {
const auto& tensor = THPVariable_Unpack(self);
// Is this true or not??? Triggered by TestAutograd.test_variable_traverse
// TORCH_INTERNAL_ASSERT(tensor.defined());
// Check if there are other C++ owners
if (tensor.use_count() <= 1) {
return false;
}
// There are other C++ owners of the tensor. Flip ownership
// so that C++ owns this Python object, and cancel deallocation.
TORCH_INTERNAL_ASSERT(!tensor.unsafeGetTensorImpl()->owns_pyobj());
tensor.unsafeGetTensorImpl()->set_owns_pyobj(true);
// Resurrect the Python object. This is something CPython does
// internally occasionally, see
// https://github.com/python/cpython/blob/b98eba5bc2ffbe7a0ed49d540ebc4f756ae61985/Objects/object.c#L248-L259
// so we just copy the pattern here. Note that we don't have to worry
// about saving and restoring the refcount (as the quoted code does)
// because we actually DO need to reset the refcount to one here, we
// can't assume that some other code has taken care of it.
// NB: this will overreport _Py_RefTotal but based on inspection of object.c
// there is no way to avoid this
#ifdef Py_TRACE_REFS
_Py_AddToAllObjects(reinterpret_cast<PyObject *>(self), 1);
#endif
Py_INCREF(self);
// Flip THPVariable to be non-owning
// (near use-after-free miss here: fresh MaybeOwned is created breaking
// reference on Tensor in struct BEFORE we overwrite the old one)
self->cdata = MaybeOwned<Variable>::borrowed(tensor);
// NB: At this point, tensor *could* be dead (e.g., some other C++ thread
// decrefed it.) At this point, it is probably waiting on the GIL to
// deallocate the Python object and will kill self, BUT NOT YET.
return true;
}
PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs);
static PyObject* THPVariable_fix_weakref(PyObject* self, PyObject* noargs) {
const auto& var = THPVariable_Unpack(self);
THPVariable_Wrap(var);
Py_RETURN_NONE;
}
// Instantiates a subclass of self with the same data.
static PyObject* THPVariable_as_subclass(PyObject* _self, PyObject* args, PyObject* kwargs) {
HANDLE_TH_ERRORS
const auto& self = THPVariable_Unpack(_self);
static PythonArgParser parser({
"as_subclass(PyObject* cls)",
});
ParsedArgs<1> parsed_args{};
auto r = parser.parse(_self, args, kwargs, parsed_args);
PyObject* cls = r.pyobject(0);
if (!PyType_Check(cls)) {
throw torch::TypeError("cls must be a type (got %s)", Py_TYPE(cls)->tp_name);
}
return THPVariable_NewWithVar(
(PyTypeObject*)cls,
self.alias(),
c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_make_subclass(PyObject* _ignored, PyObject* args, PyObject* kwargs) {
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_make_subclass(PyObject* cls, Tensor data, bool require_grad=False)",
});
ParsedArgs<3> parsed_args{};
auto r = parser.parse(args, kwargs, parsed_args);
PyObject* cls = r.pyobject(0);
if (!PyType_Check(cls)) {
throw torch::TypeError("cls must be a type (got %s)", Py_TYPE(cls)->tp_name);
}
auto data =
r.tensor(1).detach(); // creates a fresh Tensor (DEFINITELY_UNINITIALIZED)
// We set `data`'s `allow_tensor_metadata_change` to true here, because we want to
// allow the following use case for backward compatibility:
//
// ```python
// rnn = torch.nn.RNN(100, 100, 2)
// # The following calls `torch._cudnn_rnn_flatten_weight(rnn._flat_weights, ...)`,
// # which changes storage of `rnn`'s weights in-place
// rnn.flatten_parameters()
// ```
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
data.set_requires_grad(r.toBool(2));
return THPVariable_NewWithVar(
(PyTypeObject*)cls,
std::move(data),
c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_make_wrapper_subclass(PyObject*, PyObject* args, PyObject* kwargs) {
HANDLE_TH_ERRORS
// NB: pin_memory doesn't actually do anything
// TODO: strides variant?
static PythonArgParser parser({
"_make_wrapper_subclass(PyObject* cls, IntArrayRef size, *, IntArrayRef? strides=None, int64_t? storage_offset=None, MemoryFormat? memory_format=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)",
});
ParsedArgs<10> parsed_args{};
auto r = parser.parse(args, kwargs, parsed_args);
PyObject* cls = r.pyobject(0);
TORCH_CHECK_TYPE(PyType_Check(cls), "cls must be a type (got ", Py_TYPE(cls)->tp_name, ")");
// This is an important safety check; without it, the default behavior will be
// to continue on to the underlying CPU/CUDA kernel advertised by the dispatch
// key, which will immediately segfault because the data pointer is null. By
// forcing users to define __torch_dispatch__ we ensure this does not happen
TORCH_CHECK_TYPE(PyObject_FastGetAttrString(cls, "__torch_dispatch__").ptr() != nullptr,
((PyTypeObject*)cls)->tp_name, " must define __torch_dispatch__");
const auto options = TensorOptions()
.dtype(r.scalartype(5))
.device(r.device(7))
.layout(r.layoutOptional(6))
// NB: long standing issue, requires_grad is not respected here; you
// have to set it post facto, see https://github.com/pytorch/pytorch/issues/26428
// .requires_grad(r.toBool(7))
.pinned_memory(r.toBool(8));
// don't bother releasing GIL here, as we are not allocating any nontrivial
// data
// TODO: for_blob produces non-resizable tensors, we might want this to be
// resizable (have to define a custom allocator in that case)
auto data = at::for_blob(nullptr, r.intlist(1))
.strides(r.intlistOptional(2))
.storage_offset(r.toInt64Optional(3))
.context(nullptr, [](void *ctx) {})
.target_device(options.device()) // TODO: this shouldn't be necessary if it came from options
.options(options)
.make_tensor();
data.set_requires_grad(r.toBool(9));
return THPVariable_NewWithVar(
(PyTypeObject*)cls,
std::move(data),
c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
END_HANDLE_TH_ERRORS
}
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
PyObject *THPVariable_get_python_dispatch(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
const auto& var = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(var.unsafeGetTensorImpl()->is_python_dispatch());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_T(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "T");
}
const auto& var = THPVariable_Unpack(self);
return THPVariable_Wrap(var.numpy_T());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_H(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "H");
}
const auto& var = THPVariable_Unpack(self);
return THPVariable_Wrap(var.matrix_H());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_mT(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "mT");
}
const auto& var = THPVariable_Unpack(self);
return THPVariable_Wrap(var.mT());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_mH(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "mH");
}
const auto& var = THPVariable_Unpack(self);
return THPVariable_Wrap(var.mH());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_cdata(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "_cdata");
}
const auto& var = THPVariable_Unpack(self);
return PyLong_FromVoidPtr(var.unsafeGetTensorImpl());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_version(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "_version");
}
const auto& var = THPVariable_Unpack(self);
return PyInt_FromLong(var._version());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_grad_fn(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "grad_fn");
}
const auto& var = THPVariable_Unpack(self);
if (!var.grad_fn()) {
Py_RETURN_NONE;
}
return functionToPyObject(var.grad_fn());
END_HANDLE_TH_ERRORS
}
static int THPVariable_set_grad_fn(THPVariable *self, PyObject *obj, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "_grad_fn", obj);
}
THPUtils_assertRet(-1, obj, "Deletion of _grad_fn not allowed. Detach tensor instead!");
THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
THPVariable_Unpack(self).detach_();
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
static PyObject *THPVariable_is_leaf(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_leaf");
}
return PyBool_FromLong(!THPVariable_Unpack(self).grad_fn());
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_get_data(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "data");
}
const auto& var = THPVariable_Unpack(self).variable_data();
return THPVariable_Wrap(var);
END_HANDLE_TH_ERRORS
}
int THPVariable_set_data(THPVariable *self, PyObject *data, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "data", data);
}
THPUtils_assertRet(-1, data, "Deleting tensor data is not allowed. Delete tensor instead!");
if (!THPVariable_Check(data)) {
throw torch::TypeError("Variable data has to be a tensor, but got %s", Py_TYPE(data)->tp_name);
}
THPVariable_Unpack(self).set_data(THPVariable_Unpack(data));
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_grad(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "grad");
}
return THPVariable_Wrap(THPVariable_Unpack(self).grad());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_grad(THPVariable *self, PyObject *py_grad, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "grad", py_grad);
}
const auto& var = THPVariable_Unpack(self);
if (!py_grad || py_grad == Py_None) {
var.mutable_grad().reset();
return 0;
}
TORCH_CHECK_TYPE(THPVariable_Check(py_grad),
"assigned grad expected to be a Tensor or None but got grad of type", THPUtils_typename(py_grad));
THPUtils_assertRet(-1, self != (THPVariable*)py_grad,
"can't assign Variable as its own grad");
const auto& grad = THPVariable_Unpack(py_grad);
bool gradIsSparse = (var.dtype() == grad.dtype() &&
var.device().type() == grad.device().type() &&
grad.layout() == kSparse);
THPUtils_assertRet(-1, grad.options().type_equal(var.options()) || gradIsSparse,
"assigned grad has data of a different type");
if (var.is_cuda()) {
THPUtils_assertRet(-1, grad.get_device() == var.get_device(),
"assigned grad has data located on a different device");
}
THPUtils_assertRet(-1, grad.sizes().equals(var.sizes()),
"assigned grad has data of a different size");
var.mutable_grad() = grad;
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_volatile(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "volatile");
}
const char* msg = "volatile was removed (Variable.volatile is always False)";
auto r = PyErr_WarnEx(PyExc_UserWarning, msg, 1);
if (r != 0) throw python_error();
Py_RETURN_FALSE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_volatile(THPVariable *self, PyObject *obj, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "volatile", obj);
}
auto r = PyErr_WarnEx(PyExc_UserWarning, VOLATILE_WARNING, 1);
if (r != 0) throw python_error();
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_output_nr(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "output_nr");
}
const auto output_nr = static_cast<long>(THPVariable_Unpack(self).output_nr());
return PyInt_FromLong(output_nr);
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_requires_grad(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "requires_grad");
}
if(THPVariable_Unpack(self).requires_grad()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_retains_grad(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "retains_grad");
}
if(THPVariable_Unpack(self).retains_grad()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_ndim(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "ndim");
}
return PyInt_FromLong(THPVariable_Unpack(self).dim());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_names(PyObject *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
return handle_torch_function_getter((THPVariable*)self, "names");
}
// The long-term plan is to return a list of (python) torch.Dimname.
// However, for now, return a list of string.
const auto& tensor = THPVariable_Unpack(self);
size_t size = tensor.dim();
THPObjectPtr tuple(PyTuple_New(size));
if (!tuple) throw python_error();
const auto dimnames = tensor.names();
for (const auto i : c10::irange(size)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
PyObject* str;
if (dimnames[i].type() == at::NameType::WILDCARD) {
// PyTuple_SET_ITEM steals a reference to the object. When the tuple is
// deallocated, it'll decrement the refcount on Py_None, which is bad.
// To avoid this, we "create" a new reference to Py_None by increasing
// the refcount.
// Sources:
// - https://docs.python.org/3/c-api/tuple.html#c.PyTuple_SetItem
// - https://stackoverflow.com/questions/16400600/how-to-return-a-tuple-containing-a-none-value-from-the-c-api
Py_INCREF(Py_None);
str = Py_None;
} else {
str = THPUtils_packString(dimnames[i].symbol().toUnqualString());
if (!str) throw python_error();
}
PyTuple_SET_ITEM(tuple.get(), i, str);
}
return tuple.release();
END_HANDLE_TH_ERRORS
}
int THPVariable_set_names(PyObject *self, PyObject *names, void *unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
return handle_torch_function_setter((THPVariable*)self, "names", names);
}
const auto& var = THPVariable_Unpack(self);
if (names == Py_None) {
at::internal_set_names_inplace(var, at::nullopt);
} else {
THPUtils_assertRet(-1,
THPUtils_checkDimnameList(names),
"names must either be None or a tuple of dim names");
at::internal_set_names_inplace(var, torch::parseDimnameList(names));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
int THPVariable_set_requires_grad(THPVariable *self, PyObject *obj, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "requires_grad", obj);
}
THPUtils_assertRet(-1, obj && PyBool_Check(obj), "requires_grad must be a bool");
const auto& var = THPVariable_Unpack(self);
auto requires_grad = (obj == Py_True);
if (!var.is_leaf()) {
THPUtils_setError(autograd::utils::requires_grad_leaf_error(obj == Py_True).c_str());
return -1;
}
if (requires_grad && !isDifferentiableType(at::typeMetaToScalarType((var.dtype())))) {
THPUtils_setError("only Tensors of floating point and complex dtype can require gradients");
return -1;
}
var.set_requires_grad(requires_grad);
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_name(THPVariable* self, void *unused)
{
if (check_has_torch_function((PyObject *)self)) {
HANDLE_TH_ERRORS
return handle_torch_function_getter(self, "name");
END_HANDLE_TH_ERRORS
}
const auto& tensor = THPVariable_Unpack(self);
if (tensor.name() == "")
Py_RETURN_NONE;
return THPUtils_packString(tensor.name().c_str());
}
PyObject *THPVariable_get_backwards_hooks(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "_backward_hooks");
}
if (self->backward_hooks) {
Py_INCREF(self->backward_hooks);
return self->backward_hooks;
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_backwards_hooks(THPVariable *self, PyObject *obj, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "_backward_hooks", obj);
}
THPUtils_assertRet(-1, obj, "Deletion of _backwards_hooks not allowed!");
if (obj == Py_None) {
obj = nullptr;
}
Py_XINCREF(obj);
Py_XDECREF(self->backward_hooks);
self->backward_hooks = obj;
const auto& tensor = THPVariable_Unpack(self);
torch::autograd::impl::clear_hooks(tensor);
if (obj) {
torch::autograd::impl::add_hook(tensor, std::make_shared<PyFunctionPreHook>(obj, 0));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_base(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "_base");
}
const auto& tensor = THPVariable_Unpack(self);
if (tensor.is_view()) {
return THPVariable_Wrap(tensor._base());
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
#ifndef USE_DEPLOY
// This code is only used for asserts, so it is OK to skip it entirely from
// deploy interpreters (in which case we will just skip the safety check). For
// a more precise check, it would be necessary to test that we are not holding
// the GIL for *all* active torch deploy interpreters. There is not really any
// reason to do this.
struct ConcretePythonGILHooks : public c10::impl::PythonGILHooks {
bool check_python_gil() const override {
return Py_IsInitialized() && PyGILState_Check();
};
};
// During process destruction, python_gil_hooks will get destructed, making
// further virtual calls on the object invalid. By the ordering of declarations
// in this file, the registerer will get destructed first, removing the
// externally visible reference to the object. Assuming at this point in time,
// there aren't other threads racing to read out the hooks, subsequent calls
// into GIL hooks will hit a nullptr and gracefully no-op the asserts (as
// desired, since at process shutdown time the Python interpreter is definitely
// dead).
//
// An alternative way to reduce the risk of python_gil_hooks going prematurely
// dead would be to leak it at destruction time. I didn't do that because
// it's annoying to write the Registerer class for this case.
ConcretePythonGILHooks python_gil_hooks;
static c10::impl::PythonGILHooksRegisterer python_gil_hooks_registerer(&python_gil_hooks);
#endif
PyObject *THPVariable_get_shape(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "shape");
}
return THPSize_New(THPVariable_Unpack(self));
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_cuda(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_cuda");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_cuda());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_xpu(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_xpu");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_xpu());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_sparse(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_sparse");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_sparse());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_sparse_csr(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_sparse_csr");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_sparse_csr());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_mkldnn(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_mkldnn");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_mkldnn());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_mlc(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_mlc");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_mlc());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_ort(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_ort");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_ort());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_vulkan(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_vulkan");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_vulkan());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_quantized(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_quantized");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_quantized());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_meta(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_meta");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_meta());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_complex(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_complex");
}