forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofiler_python.cpp
718 lines (618 loc) · 26.7 KB
/
profiler_python.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
#include <torch/csrc/autograd/profiler_python.h>
#include <iostream>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <Python.h>
#include <frameobject.h>
#include <c10/macros/Macros.h>
#include <c10/util/flat_hash_map.h>
#include <torch/csrc/autograd/profiler_kineto.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/pybind.h>
namespace py = pybind11;
namespace torch { namespace autograd { namespace profiler { namespace python_tracer {
namespace {
// ============================================================================
// == Core data types =========================================================
// ============================================================================
// PyObject that allows different threads to record events without colliding.
// It is passed as the second argument when enabling tracing via
// `PyEval_SetProfile`.
struct TraceContext {
PyObject_HEAD
// It is wasteful to store an entire PyThreadState* in RawEvent. So
// instead, we map thread ids down to a compact space that we can store in
// a single byte.
uint8_t thread_id_;
PyThreadState* thread_state_;
// Likewise, int64_t is more precision than we need. By tracking when the
// profiler starts we can store "time since profile begin" which can fit
// into less space.
int64_t initial_us_;
// TODO:
// Wall time is actually fairly expensive to compute. Empirically, it
// takes ~600 ns to call `now()`. This puts a hard lower bound on the
// overhead of the tracer. If we collected wall time less frequently, and
// used TSC (e.g. through __rdtsc) to interpolate it should be possible
// to reduce time spent on timestamps while retaining the same level of
// accuracy.
};
// CPython boilerplate to define `TraceContext` as a proper python object.
static PyTypeObject TraceContextType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"TraceContext", /* tp_name */
sizeof(TraceContext), /* tp_basicsize */
0, /* tp_itemsize */
nullptr, /* tp_dealloc */
0, /* tp_vectorcall_offset */ // NOLINT: modernize-use-nullptr
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
"Python tracer TLS", /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
nullptr, /* tp_methods */
nullptr, /* tp_members */
nullptr, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
PyType_GenericNew, /* tp_new */
nullptr /* tp_free */
};
// CPython has a more expressive set of events for tracing / profiling:
// https://github.com/python/cpython/blob/f291404a802d6a1bc50f817c7a26ff3ac9a199ff/Include/cpython/pystate.h#L22-L29
// As an implementation detail they are defined as 0-7, however we don't want
// to rely on that while bit packing. Furthermore, the CPython descriptions
// are finer granularity than we're interested in. We do not need to
// differentiate between a normal return and an exception (both act as a pop in
// our replay stack), and we are not interested in `PyTrace_LINE` or
// `PyTrace_OPCODE`. To simplify things we store our own enum when tracefunc is
// called, and then use for all subsequent processing.
enum TraceTag {
kPy_Call = 0,
kPy_Return,
kC_Call,
kC_Return
};
// When we are tracing a Python program, the general procedure is to record
// every time we enter or exit a function and later replay these events during
// post processing. Thus, during the profiling phase we want to do the MINIMAL
// amount of work to capture all of the information that we need; otherwise we
// will distort the profile. (While we don't wish to be terribly inefficient
// during post processing, we are willing to do extra fixup work in post if it
// reduces overhead in the profiling phase.)
//
// To that end, `RawEvent` (which logs calls and returns) is bitpacked to
// reduce data stored and fit more events on a cache line. The following
// techniques are used:
//
// 1) Storing `tag_` as a uint8_t rather than a TraceTag.
// The size of an enum, surprisingly, is not the amount of space needed
// to store all the fields, but rather *at least* that size.
// (`sizeof(TraceTag) == 2` on my system, for example.)
//
// 2) Storing thread id rather than the full PyThreadState*.
//
// 3) Storing f_lasti as a uint16_t rather than a full int.
// In practice this is plenty. It is also less dangerous than it might
// initially seem; when we call the CPython API (`PyCode_Addr2Line`) we
// use the full int `f_lasti`. The truncation in the stored event only
// affects the cache key when we replay the stack. While this could result
// in cache misses (and unknown names) in corner cases, it has the
// significant benefit of letting us skip the full line number calculation
// after the first call to a function.
//
// 4) Storing time relative to the start of profiling.
// In general profiling is short lived. Storing an entire int64_t just to
// record that a handful of microseconds have passed is not a good use of
// bits. So instead, we record the time since profiling began. We can
// fit over an hour into a uint32_t which is far longer than the profiler
// should ever run for a continuous period.
//
// With these tricks we can pack all of the above into a single 8 byte word.
// The second word is case dependent.
//
// One obvious question is: why manually tag the union rather than using a
// `std::variant`? (Or `c10::variant`, as it were.) The answer is that due
// to alignment the tag would have to be packed with the union data and
// `RawEvent` would grow to three words. (Not just 50% bigger, but also less
// cache friendly.)
struct RawEvent {
RawEvent(TraceTag tag, int lasti, TraceContext* ctx)
: tag_(static_cast<uint8_t>(tag)),
thread_id_(ctx->thread_id_),
lasti_(static_cast<uint16_t>(lasti)),
misc_() {
int64_t t = now() - ctx->initial_us_;
t_ = static_cast<uint32_t>(t);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(lasti <= std::numeric_limits<uint16_t>::max());
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(t <= std::numeric_limits<uint32_t>::max());
}
RawEvent(TraceTag tag, int lasti, TraceContext* ctx, PyCodeObject* f_code)
: RawEvent(tag, lasti, ctx) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(tag == TraceTag::kPy_Call);
misc_.f_code_ = f_code;
}
RawEvent(TraceTag tag, int lasti, TraceContext* ctx, PyObject* arg)
: RawEvent(tag, lasti, ctx) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(tag == TraceTag::kC_Call);
misc_.arg_ = arg;
}
uint8_t tag_;
uint8_t thread_id_;
uint16_t lasti_;
uint32_t t_;
union {
// TraceTag::kPy_Call
PyCodeObject* f_code_;
// TraceTag::kC_Call
PyObject* arg_;
// TraceTag::kPy_Return
// TraceTag::kC_Return
// ** Unused (placeholder) **
void* null_;
} misc_;
C10_NODISCARD TraceTag tag() const {
return static_cast<TraceTag>(tag_);
}
C10_NODISCARD int lasti() const {
// f_lasti is positive, with one exception: CPython intializes frames
// with `f_lasti = -1`. We don't want to give up half of the range by
// switching to int16_t. So instead we do the fast (underflowing) cast
// in the ctor, and rectify the value in this accessor which should
// only be called during trace post processing.
return lasti_ == std::numeric_limits<uint16_t>::max()
? (int)(-1)
: (int)lasti_;
}
};
// Make sure the bit packing that we do in RawEvent actually results in the
// desired size reduction.
static_assert(sizeof(RawEvent) <= 16, "RawEvent is too large");
// std::hash doesn't have a specialization for pairs so we have to define one.
// A simple XOR is good enough for our purposes.
struct hash_pair {
template <class T1, class T2>
size_t operator() (const std::pair<T1, T2>& pair) const {
return std::hash<T1>()(pair.first) ^ std::hash<T2>()(pair.second);
}
};
// ============================================================================
// == Tracing implementation ==================================================
// ============================================================================
constexpr size_t max_py_threads = std::numeric_limits<uint8_t>::max() + 1;
class PythonTracer final {
public:
// Static methods serve as external interfaces (which expect raw pointers)
// and handle forwarding to the singleton.
static void call(Command c);
static int pyProfileFn(
PyObject* obj,
PyFrameObject* frame,
int what,
PyObject* arg);
private:
PythonTracer();
static PythonTracer& singleton();
friend class PyTraceReplay;
void start(size_t max_threads = max_py_threads);
void stop();
void clear();
void recordPyCall(TraceContext* ctx, PyFrameObject* frame);
void recordCCall(TraceContext* ctx, PyFrameObject* frame, PyObject* arg);
void recordReturn(TraceContext* ctx, PyFrameObject* frame, TraceTag tag);
void storeDescription(PyFrameObject* frame);
void trackModule(PyFrameObject* frame);
// It is imperitive that we do not store strings for each python function,
// as that would do terrible things to our profiling overhead. So instead
// we store the much cheaper pair of `PyCodeObject*` and `int` which we can
// pack into `RawEvent`, and then store a mapping to the full strings the
// first time we see a function.
//
// TODO:
// In theory we should be able to use a combination of Py_INCREF on
// `f_code` and string interning to skip this step. (Effectively reusing
// work that the CPython interpreter has already done.) However it tends
// to segfault and simply caching the strings is inexpensive.
struct CodeDescription {
CodeDescription(int line_no, std::string filename, std::string funcname)
: line_no_(line_no),
filename_(std::move(filename)),
funcname_(std::move(funcname)) {}
int line_no_;
std::string filename_;
std::string funcname_;
};
struct ModuleForward {
ModuleForward(size_t event_index, PyObject* self)
: event_index_(event_index), self_(self) {}
size_t event_index_;
// NB:
// This is a non-owning reference to keep `ModuleForward` POD;
// `PythonTracer` owns the contents instead. We Py_INCREF in
// `trackModule`, and `reset` is responsible for calling Py_DECREF
// when clearing `module_calls_`.
PyObject* self_;
};
bool active_;
PyObject* module_call_code_;
std::vector<std::string> path_prefixes_;
std::vector<TraceContext*> trace_contexts_;
std::vector<RawEvent> events_;
std::vector<ModuleForward> module_calls_;
using DescriptionKey = std::pair</*f_code=*/PyCodeObject*, /*f_lasti=*/int>;
ska::flat_hash_map<DescriptionKey, CodeDescription, hash_pair> code_descriptions_;
ska::flat_hash_map<PyObject*, std::string> c_function_reprs_;
};
PythonTracer& PythonTracer::singleton() {
static PythonTracer singleton_;
return singleton_;
}
PythonTracer::PythonTracer() : active_(false) {
path_prefixes_ = py::module::import("torch.profiler.python_tracer")
.attr("_prefix_regex")().cast<std::vector<std::string>>();
module_call_code_ = py::module::import("torch.nn")
.attr("Module")
.attr("__call__")
.attr("__code__")
.ptr();
}
void PythonTracer::start(size_t max_threads) {
TORCH_CHECK(!active_, "PythonTracer is already active")
TORCH_CHECK(!trace_contexts_.size(), "PythonTracer should not have active contexts");
TORCH_CHECK(max_threads > 0, "max_threads must be positive, got ", max_threads);
TORCH_CHECK(
max_threads <= max_py_threads,
"max_threads must be less than or equal to ", max_py_threads);
pybind11::gil_scoped_acquire gil;
auto t0 = now();
// Loop over all threads within the current interpreter. We will need to
// register a trace function with each thread. We set the current thread to
// position zero to ensure that it is traced, and so we can restore the
// thread state after registration.
std::vector<PyThreadState*> thread_states { PyThreadState_Get() };
if (max_threads > 1) {
auto thread_state = thread_states[0];
while (thread_state != nullptr) {
if (thread_state != thread_states[0]) {
thread_states.push_back(thread_state);
}
thread_state = PyThreadState_Next(thread_state);
}
if (thread_states.size() > max_threads) {
std::cout << "Warning: can only trace " << max_threads << " threads. "
<< thread_states.size() << " are currently active." << std::endl;
thread_states.resize(max_threads);
}
}
// Register the tracer in each thread.
for (size_t i = 0; i < thread_states.size(); i++) {
PyThreadState* thread_state = thread_states[i];
PyThreadState_Swap(thread_state);
auto ctx = (TraceContext*) TraceContextType.tp_alloc(&TraceContextType, 0);
ctx->thread_id_ = (uint8_t)i;
ctx->thread_state_ = thread_state;
ctx->initial_us_ = t0;
trace_contexts_.push_back(ctx);
// When we begin profiling there are already frames on the Python
// interpreter stack. To ensure a complete trace, we must push calls
// to all the prior frames onto our event stack. (We stop at depth=128)
std::vector<PyFrameObject*> current_stack;
auto frame = PyEval_GetFrame();
size_t depth = 0; // Make sure we can't infinite loop.
while (frame != nullptr && depth <= 128) {
current_stack.push_back(frame);
frame = frame->f_back;
depth++;
}
for (auto it = current_stack.rbegin(); it != current_stack.rend(); it++) {
recordPyCall(ctx, *it);
}
// Note:
// This profile will not compose with other CPython profilers, and
// cannot be round tripped via `sys.settrace(sys.gettrace())`
PyEval_SetProfile(PythonTracer::pyProfileFn, (PyObject*)ctx);
}
// Restore the thread state to its initial value.
PyThreadState_Swap(thread_states[0]);
active_ = true;
};
void PythonTracer::stop() {
TORCH_INTERNAL_ASSERT(active_, "PythonTracer is not running.")
pybind11::gil_scoped_acquire gil;
PyThreadState* initial_thread_state = PyThreadState_Get();
for (const auto i : trace_contexts_) {
PyThreadState_Swap(i->thread_state_);
PyEval_SetProfile(nullptr, nullptr);
}
PyThreadState_Swap(initial_thread_state);
active_ = false;
}
void PythonTracer::clear() {
TORCH_CHECK(!active_, "Cannot clear state while PythonTracer is active.");
for (auto i : trace_contexts_) {
Py_DECREF((PyObject*) i);
}
trace_contexts_.clear();
events_.clear();
code_descriptions_.clear();
c_function_reprs_.clear();
for (auto& i : module_calls_) {
Py_DECREF(i.self_);
}
module_calls_.clear();
}
void PythonTracer::recordPyCall(TraceContext* ctx, PyFrameObject* frame) {
events_.emplace_back(TraceTag::kPy_Call, frame->f_lasti, ctx, frame->f_code);
storeDescription(frame);
trackModule(frame);
}
void PythonTracer::recordCCall(TraceContext* ctx, PyFrameObject* frame, PyObject* arg) {
events_.emplace_back(TraceTag::kC_Call, frame->f_lasti, ctx, arg);
const auto& it = c_function_reprs_.find(arg);
if C10_UNLIKELY(it == c_function_reprs_.end()) {
c_function_reprs_[arg] = py::repr(arg);
}
}
void PythonTracer::recordReturn(TraceContext* ctx, PyFrameObject* frame, TraceTag tag) {
events_.emplace_back(tag, frame->f_lasti, ctx);
}
// NB:
// `frame->f_lasti` will advance as the interpreter progresses through the
// code object. Thus, we need to call `storeDescription` when we record the
// call rather than the return. (Otherwise we would get the line with the
// return stmt.)
void PythonTracer::storeDescription(PyFrameObject* frame) {
const auto& it = code_descriptions_.find({ frame->f_code, frame->f_lasti });
if C10_UNLIKELY(it == code_descriptions_.end()) {
code_descriptions_.insert({
{ frame->f_code, frame->f_lasti },
{
/*line_no=*/ PyCode_Addr2Line(frame->f_code, frame->f_lasti),
/*filename=*/ THPUtils_unpackString(frame->f_code->co_filename),
/*funcname=*/ THPUtils_unpackString(frame->f_code->co_name)
}
});
}
}
void PythonTracer::trackModule(PyFrameObject* frame) {
if ((PyObject*)(frame->f_code) == module_call_code_) {
// By default, CPython stores locals in a "fast" format, with an array
// of names and an array of values. Consequently, frame->f_locals is
// NULL since the interpreter has no need to populate it.
//
// If these arrays were part of the public API then we could very
// quickly access `self`. Unfortunately they are not, and moreover are
// not stable across versions. As a result, we are forced to call
// `PyFrame_FastToLocals` which forces the interpreter to materialize
// the full dict of locals.
PyFrame_FastToLocals(frame);
auto self = PyDict_GetItemString(frame->f_locals, "self");
Py_INCREF(self);
module_calls_.emplace_back(
/*event_index=*/events_.size() - 1,
/*self=*/self
);
PyFrame_LocalsToFast(frame, 0);
}
};
// ============================================================================
// == Post processing =========================================================
// ============================================================================
class PyTraceReplay {
public:
static std::vector<std::unique_ptr<PyTraceEvent>> getEvents() {
return PyTraceReplay().replayStack();
}
private:
PyTraceReplay();
std::vector<std::unique_ptr<PyTraceEvent>> replayStack() const;
struct ReplayFrame {
std::unique_ptr<PyTraceEvent> event_;
size_t id_;
size_t parent_id_;
};
ska::flat_hash_map<size_t, PyObject*> module_self_map_;
ska::flat_hash_map<size_t, std::string> module_name_map_;
};
PyTraceReplay::PyTraceReplay() {
ska::flat_hash_map<PyObject*, std::string> module_names;
for (const auto& call : PythonTracer::singleton().module_calls_) {
if (module_names.find(call.self_) == module_names.end()) {
std::stringstream name_stream;
auto py_class_name = py::handle(call.self_)
.attr("__class__")
.attr("__name__");
name_stream << "nn.Module: " << py::str(py_class_name);
module_names.insert({ call.self_, name_stream.str() });
}
module_self_map_.insert({ call.event_index_, call.self_ });
module_name_map_.insert({ call.event_index_, module_names.at(call.self_) });
}
}
// TODO: Use re2.
void trimPrefix(std::string& s, const std::vector<std::string>& prefixes) {
for (const auto& p : prefixes) {
if (s.compare(0, p.size(), p) == 0) {
s.erase(0, p.size());
return;
}
}
}
std::vector<std::unique_ptr<PyTraceEvent>> PyTraceReplay::replayStack() const {
const auto& tracer = PythonTracer::singleton();
// We want to prune paths to a sensible prefix. For example
// `/foo/bar/baz/site-packages/torch/__init__.py` -> `torch/__init__.py`
// Pruning the path prefix is somewhat expensive, so we cache it.
ska::flat_hash_map<std::string, std::string> filename_map;
for (const auto& i : tracer.code_descriptions_) {
if (filename_map.find(i.second.filename_) == filename_map.end()) {
std::string s(i.second.filename_);
trimPrefix(s, tracer.path_prefixes_);
filename_map[i.second.filename_] = s;
}
}
auto py_name = [&](const RawEvent& e) {
const auto& desc_it = tracer.code_descriptions_.find({e.misc_.f_code_, e.lasti()});
if (desc_it != tracer.code_descriptions_.end()) {
std::stringstream name_stream;
name_stream << filename_map.at(desc_it->second.filename_) << "("
<< desc_it->second.line_no_ << "): " << desc_it->second.funcname_;
return name_stream.str();
}
return std::string("Python: ???");
};
size_t id_counter = 0;
std::vector<std::vector<ReplayFrame>> stacks(tracer.trace_contexts_.size());
std::vector<ReplayFrame> results;
// Match calls and returns.
size_t event_idx = 0;
for (auto& raw_event : tracer.events_) {
auto& stack = stacks[raw_event.thread_id_];
auto ctx = tracer.trace_contexts_[raw_event.thread_id_];
auto t = static_cast<int64_t>(raw_event.t_) + ctx->initial_us_;
auto push_frame = [&](std::string name, CallType call_type, size_t module_id = 0) {
stack.push_back(ReplayFrame {
/*event_=*/ std::make_unique<PyTraceEvent>(PyTraceEvent{
/*startTime_=*/ t,
/*endTime_=*/ -1, // Placeholder
/*name_=*/ name,
/*thread_id_=*/ raw_event.thread_id_,
/*parent_=*/ nullptr, // Placeholder
/*call_type_=*/ call_type,
/*module_id_=*/ module_id,
/*call_idx_=*/ event_idx,
/*return_idx_=*/ 0 // Placeholder
}),
/*id_=*/ id_counter++,
/*parent_id_=*/ stack.size() ? stack.back().id_ : 0,
});
};
switch (raw_event.tag()) {
case TraceTag::kPy_Call:
if (module_name_map_.find(event_idx) != module_name_map_.end()) {
push_frame(
module_name_map_.at(event_idx),
CallType::kPyModuleCall,
reinterpret_cast<size_t>(module_self_map_.at(event_idx)));
} else {
push_frame(py_name(raw_event), CallType::kPyCall);
}
break;
case TraceTag::kC_Call:
push_frame(tracer.c_function_reprs_.at(raw_event.misc_.arg_), CallType::kCCall);
break;
case TraceTag::kPy_Return:
case TraceTag::kC_Return:
TORCH_INTERNAL_ASSERT(stack.size(), "Python replay stack is empty.")
stack.back().event_->endTime_ = t;
stack.back().event_->return_idx_ = event_idx;
results.push_back(std::move(stack.back()));
stack.pop_back();
break;
}
event_idx++;
}
// Cleanup by feining return to close out the stack. This is needed so
// frames above the one that called the profiler still appear in the trace.
const auto t_final = now();
for (auto& stack : stacks) {
while (stack.size()) {
stack.back().event_->endTime_ = t_final;
stack.back().event_->return_idx_ = event_idx;
results.push_back(std::move(stack.back()));
stack.pop_back();
event_idx++;
}
}
// Convert to `PyTraceEvent`, and map id to pointer.
ska::flat_hash_map<size_t, PyTraceEvent*> event_id_map {{0, nullptr}};
std::vector<std::unique_ptr<PyTraceEvent>> out;
for (auto& r : results) {
out.push_back(std::move(r.event_));
event_id_map.insert({r.id_, out.back().get()});
}
// Link parents to children.
for (int i = 0; i < results.size(); i++) {
out[i]->parent_ = event_id_map.at(results[i].parent_id_);
}
return out;
}
// ============================================================================
// == API =====================================================================
// ============================================================================
int PythonTracer::pyProfileFn(
PyObject* obj,
PyFrameObject* frame,
int what,
PyObject* arg) {
auto ctx = reinterpret_cast<TraceContext*>(obj);
switch (what) {
case PyTrace_CALL:
PythonTracer::singleton().recordPyCall(ctx, frame);
break;
case PyTrace_C_CALL:
PythonTracer::singleton().recordCCall(ctx, frame, arg);
break;
case PyTrace_EXCEPTION:
case PyTrace_RETURN:
PythonTracer::singleton().recordReturn(ctx, frame, TraceTag::kPy_Return);
break;
case PyTrace_C_EXCEPTION:
case PyTrace_C_RETURN:
PythonTracer::singleton().recordReturn(ctx, frame, TraceTag::kC_Return);
break;
}
return 0;
}
void PythonTracer::call(Command c) {
switch (c) {
case Command::kStartOne:
PythonTracer::singleton().start(1);
break;
case Command::kStartAll:
PythonTracer::singleton().start();
break;
case Command::kStop:
PythonTracer::singleton().stop();
break;
case Command::kClear:
PythonTracer::singleton().clear();
break;
default:
break;
}
};
} // namespace
void init() {
pybind11::gil_scoped_acquire gil;
TORCH_CHECK(PyType_Ready(&TraceContextType) == 0);
registerFunctions(
/*call=*/&PythonTracer::call,
/*get_events=*/&PyTraceReplay::getEvents
);
}
}}}} // namespace torch::autograd::profiler::python_tracer