forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_function.cpp
458 lines (396 loc) · 18.7 KB
/
custom_function.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#include <c10/util/irange.h>
#include <torch/csrc/autograd/custom_function.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/autograd.h>
namespace torch { namespace autograd {
VariableInfo::VariableInfo(const Variable& var)
: layout(var.layout())
, device(var.device())
, scalar_type(var.scalar_type())
, size(var.sizes().vec())
, requires_grad(var.requires_grad())
, is_empty(false) {
}
VariableInfo::VariableInfo() : requires_grad(false), is_empty(true) {}
Variable VariableInfo::zeros(at::OptionalDeviceGuard& device_guard) const {
if (is_empty) {
// Return undefined tensor.
return at::Tensor();
} else {
return at::zeros(
size, at::TensorOptions(scalar_type).device(device).layout(layout));
}
}
// This function has two main goals:
// 1) Use the user-provided jvp function to populate the the outputs' forward gradient
// 2) Perform error checking to ensure that view and inplace ops are properly handled
//
// For 1) we have to:
// - Create a variable_list of grad_inputs based on the function inputs
// - Call the user jvp function with these to get the grad_outputs
// - Set the forward grad field on each output based on these grad_outputs
//
// For 2) we want to check the following:
// - If an output is a view, then the generated forward grad must be a view as well and
// the output's base's forward grad must be the output's forward grad's base.
// - If an input was modified inplace (it must be an output as well) we make sure that its
// forward grad was also modified inplace and already present on the corresponding output.
void _process_forward_mode_AD(const variable_list &inputs,
std::unordered_map<at::TensorImpl*, size_t> inputs_mapping,
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
const optional_variable_list &outputs,
const std::unordered_set<at::TensorImpl*> &non_differentiable,
const std::unordered_set<at::TensorImpl*> &dirty_inputs,
_jvp_fn_t jvp_user_function) {
// TODO handle multiple levels here
uint64_t level = 0;
const auto num_inputs = inputs.size();
const auto num_outputs = outputs.size();
// The tracking info below are used to perform the view and inplace checks.
// They are lazily initialized to reduce the cost of this function in the common
// case where the user is not using forward mode AD.
variable_list input_grads;
std::vector<int64_t> grad_versions;
std::vector<at::TensorImpl*> grad_impls;
std::unordered_map<at::TensorImpl*, size_t> inputs_bases;
auto init_tracked_info = [&] () {
input_grads.resize(num_inputs);
grad_versions.resize(num_inputs);
grad_impls.resize(num_inputs);
for (const auto i: c10::irange(num_inputs)) {
const auto& inp = inputs[i];
if (inp.is_view() && impl::get_view_autograd_meta(inp)->has_fw_view()) {
inputs_bases.emplace(impl::get_view_autograd_meta(inp)->get_forward_view().base_.unsafeGetTensorImpl(), i);
} else {
inputs_bases.emplace(inp.unsafeGetTensorImpl(), i);
}
}
};
bool any_input_has_grad = false;
// Extract the input's forward gradients and record any info we will need later
for (const auto i : c10::irange(num_inputs)) {
const auto& inp = inputs[i];
if (!inp.defined()) {
continue;
}
const auto& fw_grad = inp._fw_grad(level);
if (fw_grad.defined()) {
if (!any_input_has_grad) {
any_input_has_grad = true;
init_tracked_info();
}
input_grads[i] = fw_grad;
grad_versions[i] = fw_grad._version();
grad_impls[i] = fw_grad.unsafeGetTensorImpl();
}
}
// If no input has forward grad, nothing to do here
if (!any_input_has_grad) {
return;
}
auto forward_grads = jvp_user_function(inputs, input_grads);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
const auto num_forward_grads = forward_grads.size();
// contrary to backward mode, we don't allow returning too many gradients
TORCH_CHECK(num_forward_grads == num_outputs, "Function's jvp returned "
"an invalid number of of forward gradients (expected ", num_outputs,
" but got ", num_forward_grads, ")");
for (const auto i : c10::irange(num_outputs)) {
const auto& out = outputs[i].has_value()? outputs[i].value() : at::Tensor();
const auto& out_grad = forward_grads[i];
if (!out.defined()) {
TORCH_CHECK(!out_grad.defined(), "Function's jvp returned a gradient at position ", i, ", but "
" the corresponding forward output is not a differentiable Tensor");
continue;
}
TORCH_INTERNAL_ASSERT(raw_outputs[i].has_value());
auto out_tensor_impl = raw_outputs[i].value().unsafeGetTensorImpl();
bool is_input = inputs_mapping.count(out_tensor_impl) > 0;
bool is_modified = dirty_inputs.count(out_tensor_impl) > 0;
if (is_modified) {
TORCH_CHECK(is_input, "Only input Tensors should be given to ctx.mark_dirty(). If a Tensor is not an input, there"
" is no need to pass it to mark_dirty().");
auto inp_idx = inputs_mapping[out_tensor_impl];
if (grad_impls[inp_idx]) {
// If there was already a forward grad for that input
// Just make sure that it is modified inplace and returned as-is
TORCH_CHECK(out_grad._version() != grad_versions[inp_idx], "An inplace custom Function is not modifying the "
"forward mode gradients inplace. If the forward is modifying an input inplace, then the jvp "
"function must modify the corresponding gradient inplace.")
TORCH_CHECK(out_grad.unsafeGetTensorImpl() == grad_impls[inp_idx], "An inplace custom Function is not returning the "
"forward mode gradients as-is. If the forward is modifying an input inplace, then the jvp "
"function must modify the gradient inplace and return it as-is.")
} else {
// If that Tensor didn't had gradients already, set the newly returned one
// We could also use inputs[inp_idx] here as it is the same as out
out._set_fw_grad(out_grad, level, /* is_inplace_op */ true);
}
} else {
// At this point, outputs[i] cannot be one of the input (raw_outputs[i] might be but was changed by the backward code)
TORCH_INTERNAL_ASSERT(!is_input);
if (out.is_view() && impl::get_view_autograd_meta(out)->has_fw_view()) {
// If the output is a view
const auto& out_view_info = impl::get_view_autograd_meta(out)->get_forward_view();
if (inputs_bases.count(out_view_info.base_.unsafeGetTensorImpl())) {
// And it is a view of an input (either that input is its base or they have a common base)
const auto matching_input_idx = inputs_bases[out_view_info.base_.unsafeGetTensorImpl()];
const auto& matching_input = inputs[matching_input_idx];
const auto& matching_input_grad = matching_input._fw_grad(level);
// If the matching input has a forward grad, the user should have returned a view of that Tensor
if (matching_input_grad.defined()) {
TORCH_CHECK(out_grad.is_view() && impl::get_view_autograd_meta(out_grad)->has_fw_view(),
"A custom Function's forward is returning a view but the jvp is not returning a view.");
const auto& out_grad_base = impl::get_view_autograd_meta(out_grad)->get_forward_view().base_;
if (matching_input_grad.is_view() && impl::get_view_autograd_meta(matching_input_grad)->has_fw_view()) {
// If the matching input's grad is a view, ensure that the out_grad is a view of the same base
const auto& matching_input_grad_base = impl::get_view_autograd_meta(matching_input_grad)->get_forward_view().base_;
TORCH_CHECK(matching_input_grad_base.unsafeGetTensorImpl() == out_grad_base.unsafeGetTensorImpl(),
"A custom Function is returning a view but the jvp is not returning a view of the same base as "
"the given grad input.");
} else {
// If the matching input's grad is not a view, then it must be the output gradient's base
TORCH_CHECK(matching_input_grad.unsafeGetTensorImpl() == out_grad_base.unsafeGetTensorImpl(),
"A custom Function is returning a view but the jvp is not returning a view of the given grad input.");
}
} else {
// We have a view op where the input didn't have a forward grad but the user returned one for the output
// To ensure that we maintain the view/inplace constraints, we consider this as an inplace op
// This case CANNOT happen in codegen as all view ops are mapping from one Tensor to one Tensor and so the output
// of the view cannot have a forward grad if the base does not.
out._set_fw_grad(out_grad, level, /* is_inplace_op */ true);
return;
}
}
}
out._set_fw_grad(out_grad, level, /* is_inplace_op */ false);
}
}
}
optional_variable_list _process_backward_mode_ad(
const std::unordered_map<at::TensorImpl*, size_t> &inputs_mapping,
const std::unordered_set<at::TensorImpl*> &non_differentiable,
const std::unordered_set<at::TensorImpl*> &dirty_inputs,
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
const std::shared_ptr<Node> &cdata) {
int num_outputs = raw_outputs.size();
// Sets the grad_fn and output_nr of an output Variable.
auto set_history = [&](Variable& var, uint32_t output_nr, bool is_input, bool is_modified,
bool is_differentiable) {
if (!is_differentiable) {
if (!var.requires_grad()) {
return;
}
// Return detached aliases of inputs, instead of changing their requires_grad
// property.
if (is_input) {
var = var.detach();
} else if (!var.is_view()) {
var.detach_();
}
// If var is a view of one of the inputs of the custom autograd Function,
// we don't detach it in a no_grad block. This is so that we can mimic the
// behavior of returning a view from a no_grad block:
// x = torch.randn(3, requires_grad=True)
// with torch.no_grad():
// y = x.view(-1)
// Here, `y` requires_grad (!).
} else if (is_modified) {
if (var.is_leaf() && var.requires_grad()) {
TORCH_CHECK(false, "a leaf Variable that requires grad has been used in an in-place operation.");
}
// No need to mark as modified Tensors that are not inputs.
if (!is_input) {
TORCH_WARN("Only input Tensors should be given to ctx.mark_dirty(). If a Tensor is not an input, there"
" is no need to pass it to mark_dirty().");
}
// If the input is a view, the rebase will need to rewrite the graph and this only works if we have a single
// output to this Function.
TORCH_CHECK(!(var.is_view() && num_outputs > 1), "If your Function modifies inplace an input that is a view"
" of another Tensor, your Function cannot return more than one Tensor. This is not supported"
" by the current autograd engine. You should either make sure the input is not a view (using"
" .clone() for example) or make your Function only return one Tensor (potentially splitting"
" it into two Functions: one doing the inplace that returns a single Tensor and a second one"
" that does the other operations). You can ask on the forum https://discuss.pytorch.org/ if"
" you need help to do this change.");
// If the input was modified, transplant the grad_fn in the graph:
// grad_fn <- variable <- self ==> grad_fn <- self <- variable
var.mutable_grad().reset();
impl::clear_hooks(var);
if (auto grad_acc_fn = impl::try_get_grad_accumulator(var)) {
auto grad_acc = dynamic_cast<AccumulateGrad*>(grad_acc_fn.get());
grad_acc->variable.reset();
}
if (cdata) {
impl::rebase_history(var, {cdata, output_nr});
}
} else if (is_input) {
// An input has been returned, but it wasn't modified. Return it as a view
// so that we can attach a new grad_fn to the Variable.
// Run in no_grad mode to mimic the behavior of the forward.
{
AutoGradMode grad_mode(false);
var = var.view_as(var);
}
impl::set_gradient_edge(var, {cdata, output_nr});
} else if (cdata) {
impl::set_gradient_edge(var, {cdata, output_nr});
}
};
optional_variable_list outputs;
std::unordered_set<at::TensorImpl*> outputs_impl; // For dirty_inputs check
outputs.reserve(num_outputs);
int num_diff_outputs = 0;
for (const auto i : c10::irange(num_outputs)) {
// For outputs that are not tensors, put a placeholder undefined input.
if (!raw_outputs[i].has_value()) {
if (cdata) {
auto output_nr = cdata->add_input_metadata(Node::undefined_input());
AT_ASSERT(i == (int)output_nr);
}
outputs.emplace_back();
continue;
}
Variable var = raw_outputs[i].value();
auto out_tensor_impl = var.unsafeGetTensorImpl();
bool is_input = inputs_mapping.count(out_tensor_impl) > 0;
bool is_modified = dirty_inputs.count(out_tensor_impl) > 0;
bool is_differentiable = cdata && non_differentiable.count(out_tensor_impl) == 0
&& isDifferentiableType(var.scalar_type());
if (cdata) {
auto output_nr = cdata->add_input_metadata(var);
AT_ASSERT(i == (int)output_nr);
}
set_history(var, i, is_input, is_modified, is_differentiable);
// For deprecation cycle. Can be removed after 1.6. In the case where we detected a view
// in no grad mode during the forward, only warn the user (do not change the flag if we
// return and input that is a view as is).
// See NOTE [ View + Inplace detection ] for why we replace everything by a warning.
if (!(is_input && is_modified) && var.is_view()) {
// is_view() => diff_view_meta
auto diff_view_meta = impl::get_view_autograd_meta(var);
diff_view_meta->set_creation_meta(CreationMeta::IN_CUSTOM_FUNCTION);
}
if (is_differentiable) {
++num_diff_outputs;
}
outputs_impl.insert(out_tensor_impl);
outputs.emplace_back(var);
}
// If multiple differentiable outputs are returned, we do not allow views to be modified inplace
// See NOTE [ View + Inplace detection ] for more details
if (num_diff_outputs > 1) {
for (auto& var: outputs) {
if (var.has_value()) {
auto diff_view_meta = impl::get_view_autograd_meta(var.value());
if (diff_view_meta && diff_view_meta->has_bw_view()) {
diff_view_meta->set_creation_meta(CreationMeta::MULTI_OUTPUT_NODE);
}
}
}
}
// All the modified Tensors must be returned as is for the rewrite to be valid.
for (auto& dirty_input : dirty_inputs) {
TORCH_CHECK(outputs_impl.count(dirty_input) > 0,
"Some elements marked as dirty during the forward method were not returned as output. The"
" inputs that are modified inplace must all be outputs of the Function.");
}
return outputs;
}
optional_variable_list _wrap_outputs(const variable_list &input_vars,
const std::unordered_set<at::TensorImpl*> &non_differentiable,
const std::unordered_set<at::TensorImpl*> &dirty_inputs,
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
const std::shared_ptr<Node> &cdata,
_jvp_fn_t jvp_user_function) {
std::unordered_map<at::TensorImpl*, size_t> inputs_mapping;
inputs_mapping.reserve(input_vars.size());
for (const auto i: c10::irange(input_vars.size())) {
inputs_mapping.emplace(input_vars[i].unsafeGetTensorImpl(), i);
}
auto outputs = _process_backward_mode_ad(inputs_mapping, non_differentiable, dirty_inputs, raw_outputs, cdata);
// This must happen after the backward processing as we expect the computations happening here to track
// backward mode gradients.
_process_forward_mode_AD(input_vars, inputs_mapping, raw_outputs, outputs, non_differentiable, dirty_inputs, jvp_user_function);
return outputs;
}
void check_variable_result(const at::TensorBase& original, const at::TensorBase& result, std::string hook_name) {
if (!original.options().type_equal(result.options())) {
std::stringstream ss;
ss << "hook '" << hook_name << "' has changed the type of value (";
ss << "was " << original.toString() << " got ";
ss << result.toString() << ")";
throw std::runtime_error(ss.str());
}
if (original.is_cuda() != result.is_cuda()) {
std::stringstream ss;
ss << "hook '" << hook_name << "' has changed the type of value";
if (original.is_cuda()) {
ss << " (was CUDA tensor got CPU tensor)";
} else {
ss << " (was CPU tensor got CUDA tensor)";
}
throw std::runtime_error(ss.str());
}
if (original.sizes().vec() != result.sizes().vec()) {
std::stringstream ss;
ss << "hook '" << hook_name << "' has changed the size of value";
throw std::runtime_error(ss.str());
}
}
void AutogradContext::save_for_backward(variable_list to_save) {
to_save_ = std::move(to_save);
}
// The logic for handling saved variables here is the same as python_function.cpp
// See _save_variables() and unpack_saved_variables()
void AutogradContext::save_variables() {
saved_variables_.clear();
auto ptr = grad_fn_.lock();
for (const auto& var : to_save_) {
// Allow empty variables to be saved
if (var.defined()) {
bool is_output = var.grad_fn().get() == ptr.get();
saved_variables_.emplace_back(var, is_output);
} else {
saved_variables_.emplace_back();
}
}
to_save_.clear();
}
variable_list AutogradContext::get_saved_variables() const {
TORCH_CHECK(!has_freed_buffers_, ERR_BACKWARD_TWICE);
variable_list saved;
saved.reserve(saved_variables_.size());
auto ptr = grad_fn_.lock();
TORCH_INTERNAL_ASSERT(ptr);
for (auto& var : saved_variables_) {
saved.push_back(var.unpack(ptr));
}
return saved;
}
void AutogradContext::mark_dirty(const variable_list &inputs) {
dirty_inputs_.clear();
dirty_inputs_.reserve(inputs.size());
for(auto& var : inputs) {
dirty_inputs_.insert(var.unsafeGetTensorImpl());
}
}
void AutogradContext::mark_non_differentiable(const variable_list &outputs) {
non_differentiable_.clear();
non_differentiable_.reserve(outputs.size());
for(auto& var : outputs) {
non_differentiable_.insert(var.unsafeGetTensorImpl());
}
}
void AutogradContext::set_materialize_grads(bool value) {
materialize_grads_ = value;
}
const std::unordered_set<at::TensorImpl*>& AutogradContext::get_and_bump_dirty() const {
for (auto& var : dirty_inputs_) {
var->bump_version();
}
return dirty_inputs_;
}
const std::unordered_set<at::TensorImpl*>& AutogradContext::get_non_differentiable() const {
return non_differentiable_;
}
}} // namespace torch::autograd