forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpp_hook.cpp
44 lines (39 loc) · 1.24 KB
/
cpp_hook.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <torch/csrc/autograd/cpp_hook.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/custom_function.h>
namespace {
using torch::autograd::Variable;
void check_single_result (const at::TensorBase &value, const at::TensorBase &result, std::string hook_name) {
if (!value.defined()) {
throw std::runtime_error("can't replace a empty gradient with a non-empty value");
}
torch::autograd::check_variable_result(value, result, hook_name);
}
}
namespace torch { namespace autograd {
// NOLINTNEXTLINE(modernize-pass-by-value)
CppFunctionPreHook::CppFunctionPreHook(const std::shared_ptr<hooks_list> &hooks, int value_idx)
: hooks_(hooks)
, value_idx_(value_idx)
{}
variable_list CppFunctionPreHook::operator()(const variable_list& values) {
auto value = values[value_idx_];
for (unsigned i = 0; i < hooks_->size(); ++i) {
auto &hook = (*hooks_)[i];
if (!hook) {
// hook was removed
continue;
}
auto res = hook(value);
if (!res.defined()) {
// Don't change gradient
continue;
}
check_single_result(value, res, c10::to_string(i));
value = std::move(res);
}
variable_list results(values);
results[value_idx_] = value;
return results;
}
}} // namespace torch::autograd