forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunctionsManual.h
392 lines (378 loc) · 21.8 KB
/
FunctionsManual.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#pragma once
// NB: Must be at the top of file to avoid including the deprecated "math.h".
// https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio
#ifdef _MSC_VER
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include <cmath>
#endif
#include <torch/csrc/autograd/generated/Functions.h>
#include <ATen/ATen.h>
namespace torch {
namespace autograd {
namespace generated {
namespace details {
extern const char* kCudnnDoubleBackwardMsg;
// A simple way to imperatively compute index ranges for slots
// that have been flattened
struct IndexRangeGenerator {
IndexRange range(size_t range_size) {
i += range_size;
return {i - range_size, i};
}
size_t size() { return i; }
private:
size_t i = 0;
};
Tensor toNonOptFwGrad(const c10::optional<Tensor>& t);
Tensor toNonOptPrimal(const c10::optional<Tensor>& t);
Tensor toNonOptTensor(const c10::optional<Tensor>& t);
bool any_variable_defined(const variable_list& variables);
void copy_range(variable_list& out, IndexRange range, const at::Tensor & t);
void copy_range(variable_list& out, IndexRange range, at::ArrayRef<at::Tensor> t);
at::Tensor copysign_tensor_self_backward(const Tensor & grad, const Tensor & self, const Tensor & result);
at::Tensor not_implemented(const char* name, const char* reason="");
std::vector<Tensor> not_implemented_list(const char* name, const char* reason="");
at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result);
at::Tensor maybe_multiply(const at::Tensor & t, const at::Scalar & s);
int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim);
Tensor restore_reduced_dims(const Tensor &output, IntArrayRef dims, bool keepdim);
Tensor scale_grad_by_count(const Tensor &grad, const Tensor &mask, IntArrayRef dims);
at::Tensor norm_backward(const at::Tensor & grad, const at::Tensor & self, const optional<at::Scalar> & p_, const at::Tensor & norm);
at::Tensor norm_backward(at::Tensor grad, const at::Tensor & self, const optional<at::Scalar> & p_, at::Tensor norm, at::IntArrayRef dim, bool keepdim);
at::Tensor linalg_vector_norm_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & ord, at::Tensor norm, const c10::optional<at::IntArrayRef> & opt_dim, bool keepdim);
at::Tensor pow_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & exponent_);
at::Tensor pow_backward_self(at::Tensor grad, const at::Tensor & self, const at::Tensor & exponent);
at::Tensor pow_backward_exponent(at::Tensor grad, const at::Tensor& self, const at::Tensor& exponent, at::Tensor result);
at::Tensor pow_backward_exponent(at::Tensor grad, const at::Scalar & base, const at::Tensor& exponent, at::Tensor result);
at::Tensor angle_backward(at::Tensor grad, const at::Tensor& self);
at::Tensor mul_tensor_backward(Tensor grad, Tensor other, ScalarType self_st);
at::Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st);
at::Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other);
at::Tensor div_tensor_self_backward(Tensor grad, Tensor other, ScalarType self_st, const c10::optional<c10::string_view>& rounding_mode);
at::Tensor div_tensor_other_backward(Tensor grad, Tensor self, Tensor other, const c10::optional<c10::string_view>& rounding_mode);
at::Tensor mvlgamma_backward(at::Tensor grad, const at::Tensor & self, int64_t p);
at::Tensor permute_backwards(const at::Tensor & grad, at::IntArrayRef fwd_dims);
at::Tensor rad2deg_backward(const at::Tensor& grad);
at::Tensor deg2rad_backward(const at::Tensor& grad);
at::Tensor unsqueeze_multiple(const at::Tensor & t, at::IntArrayRef dim, size_t n_dims);
at::Tensor sum_backward(const at::Tensor & grad, at::IntArrayRef sizes, at::IntArrayRef dims, bool keepdim);
at::Tensor nansum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dims, bool keepdim);
std::vector<int64_t> reverse_list(const at::IntArrayRef list);
at::Tensor reverse_dim(const at::Tensor& t, int64_t dim);
at::Tensor prod_safe_zeros_backward(const at::Tensor &grad, const at::Tensor& inp, int64_t dim);
at::Tensor prod_backward(const at::Tensor& grad, const at::Tensor& input, const at::Tensor& result);
at::Tensor prod_backward(at::Tensor grad, const at::Tensor& input, at::Tensor result, int64_t dim, bool keepdim);
at::Tensor solve_jvp(const Tensor& X, const Tensor& A, const Tensor& dA, const Tensor& dB);
at::Tensor solve_backward_self(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A);
at::Tensor solve_backward_A(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A, const at::Tensor & solution);
at::Tensor cumsum_backward(const at::Tensor & grad, int64_t dim);
at::Tensor logsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, at::IntArrayRef dim, bool keepdim);
at::Tensor logcumsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, int64_t dim);
at::Tensor unbind_backward(const variable_list& grads, int64_t dim);
at::Tensor unsqueeze_to(const at::Tensor & self, at::IntArrayRef sizes);
at::Tensor unsqueeze_to(const at::Tensor & self, int64_t dim, at::IntArrayRef sizes);
std::vector<at::Tensor> cat_tensors_backward(const at::Tensor & grad, const std::vector<std::vector<int64_t>> &sizes, const std::vector<ScalarType> &dtypes, int64_t dim);
at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const optional<at::Scalar>& min, const optional<at::Scalar>& max);
at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const at::Tensor& min, const at::Tensor& max);
std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max(const at::Tensor& grad, const at::Tensor& self, const at::Tensor& min, const at::Tensor& max, const std::array<bool, 2>&);
at::IntArrayRef strides_or_error(const Tensor & input, c10::string_view const & input_name);
at::Tensor mm_mat1_backward(const Tensor & grad, const Tensor & mat2, at::IntArrayRef mat1_sizes, at::IntArrayRef mat1_strides, const Scalar & alpha);
at::Tensor mm_mat2_backward(const at::Tensor & grad, const at::Tensor & mat1, at::IntArrayRef sizes, at::IntArrayRef strides, const at::Scalar & alpha);
at::Tensor _sparse_addmm_sparse_backward(const at::Tensor& grad, const at::Tensor& sparse_, const at::Tensor& dense, const at::Scalar& alpha);
at::Tensor sparse_sparse_matmul_backward(const at::Tensor& grad, const at::Tensor& mat1, const at::Tensor& mat2,int64_t grad_order);
at::Tensor renorm_backward(const at::Tensor & grad, const at::Tensor & self, const at::Scalar& p, int64_t dim, const at::Scalar& maxnorm);
at::Tensor repeat_backward(at::Tensor grad, at::IntArrayRef repeats, at::IntArrayRef input_shape);
at::Tensor _fused_dropout_backward(at::Tensor grad, at::Tensor mask, double p1m);
at::Tensor infinitely_differentiable_native_dropout_backward(const at::Tensor& grad, const at::Tensor& mask, double scale);
at::Tensor native_dropout_double_backward(const at::Tensor& ggI, const at::Tensor& grad, const at::Tensor& mask, double scale);
at::Tensor evenly_distribute_backward(at::Tensor grad, const at::Tensor & input, const at::Tensor & value);
at::Tensor sgn_backward(Tensor result, Tensor grad, Tensor self);
at::Tensor var_backward(at::Tensor grad, const at::Tensor& self, c10::optional<IntArrayRef> dim, c10::optional<int64_t> correction, bool keepdim);
at::Tensor std_backward(const at::Tensor& result, const at::Tensor& grad, const at::Tensor& self, c10::optional<IntArrayRef> dim, c10::optional<int64_t> correction, bool keepdim);
at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, at::IntArrayRef dim, bool keepdim);
at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, int64_t numel);
at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor& self, const at::Tensor& r1, const at::Tensor& r2, c10::optional<IntArrayRef> dim, c10::optional<int64_t> correction, bool keepdim, bool is_std);
at::Tensor masked_scatter_backward(const at::Tensor & grad, const at::Tensor & mask, at::IntArrayRef sizes);
at::Tensor cholesky_backward(at::Tensor grad, bool upper, at::Tensor L);
at::Tensor cholesky_jvp(const at::Tensor& input_tangent, const at::Tensor& L, bool upper);
at::Tensor cholesky_inverse_backward(at::Tensor grad, at::Tensor L, bool upper, at::Tensor inverse);
Tensor pinv_jvp(
const Tensor& A,
const Tensor& pinvA,
const Tensor& dA
);
Tensor pinv_backward(
const Tensor& grad,
const Tensor& pinvA,
const Tensor& A
);
at::Tensor split_with_sizes_backward(const std::vector<torch::autograd::Variable> &grads,
IntArrayRef split_sizes, int64_t dim, IntArrayRef sizes, const at::TensorOptions &options);
at::Tensor split_backward(const std::vector<torch::autograd::Variable> &grads, int64_t split_size, int64_t dim, at::IntArrayRef sizes, const at::TensorOptions &options);
at::Tensor max_pool_double_backward(const at::Tensor & grad, const at::Tensor & indices, int dim);
at::Tensor glu_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, int64_t dim);
at::Tensor glu_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, int64_t dim);
at::Tensor infinitely_differentiable_silu_backward(const at::Tensor& grad_output, const at::Tensor& input);
at::Tensor infinitely_differentiable_mish_backward(const at::Tensor& grad_output, const at::Tensor& input);
Tensor infinitely_differentiable_logit_backward(const Tensor& grad, const Tensor& self, c10::optional<double> eps);
at::Tensor kl_div_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, bool log_target);
Tensor binary_cross_entropy_target_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& target,
const c10::optional<Tensor>& weight,
int64_t reduction);
at::Tensor binary_cross_entropy_with_logits_target_backward(const at::Tensor& grad_output, const at::Tensor& self, const at::Tensor& target, const c10::optional<at::Tensor>& weight, const c10::optional<at::Tensor>& pos_weight, int64_t reduction);
at::Tensor binary_cross_entropy_with_logits_jvp(const Tensor& input_t, const Tensor& target_t, const Tensor& input_p, const Tensor& target_p, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& pos_weight_opt, int64_t reduction);
at::Tensor log_sigmoid_double_backward(const at::Tensor & grad, const at::Tensor & input);
at::Tensor softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output);
at::Tensor binary_cross_entropy_double_backward(const at::Tensor & grad_output, const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction);
at::Tensor binary_cross_entropy_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction);
at::Tensor l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
at::Tensor l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
at::Tensor smooth_l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta);
at::Tensor smooth_l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double beta);
at::Tensor huber_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double delta);
at::Tensor huber_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction, double delta);
at::Tensor mse_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, int64_t reduction);
at::Tensor mse_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
at::Tensor soft_margin_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
at::Tensor soft_margin_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction);
at::Tensor softplus_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Scalar& beta, const at::Scalar& threshold);
at::Tensor logdet_backward(const at::Tensor & grad, const at::Tensor& self, const at::Tensor& logdet);
at::Tensor slogdet_backward(const at::Tensor& grad_logabsdet, const at::Tensor& self, const at::Tensor& signdet, const at::Tensor& logabsdet);
at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self);
at::Tensor sinc_backward(const at::Tensor& grad, const at::Tensor& self);
at::Tensor sparse_constructor_values_backward(const at::Tensor& sparse_grad_out, const at::Tensor& indices);
at::Tensor embedding_dense_double_backward(const at::Tensor & grad, const at::Tensor & indices, int64_t padding_idx);
at::Tensor index_backward(at::Tensor zeros_like_self, const torch::List<c10::optional<Tensor>>& indices, const at::Tensor& grad);
at::Tensor _cudnn_ctc_loss_backward(const at::Tensor& grad_out, const at::Tensor& loss, const at::Tensor& raw_grad, bool zero_infinity);
at::Tensor elu_double_backward(const Tensor& grad, const Tensor& grad_output, const Scalar& alpha, const Scalar& scale, const Scalar& input_scale, bool is_result, const Tensor& self_or_result);
Tensor svd_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
bool some, bool compute_uv, const Tensor& raw_u, const Tensor& sigma, const Tensor& raw_v);
Tensor slice_backward_wrapper(
const at::Tensor& grad,
const c10::IntArrayRef& input_sizes,
int64_t dim,
c10::optional<int64_t> start,
c10::optional<int64_t> end,
int64_t step);
Tensor linalg_eig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
const Tensor& L, const Tensor& V);
std::tuple<Tensor, Tensor> linalg_eig_jvp(const Tensor& dA,
const Tensor& L,
const Tensor& V);
Tensor linalg_lstsq_jvp(
const Tensor& A,
const Tensor& B,
const Tensor& dA,
const Tensor& dB
);
Tensor eigh_jvp_eigenvectors(const Tensor& input_tangent, const Tensor& eigenvalues, const Tensor& eigenvectors);
Tensor eigh_jvp_eigenvalues(const Tensor& input_tangent, const Tensor& eigenvalues, const Tensor& eigenvectors);
Tensor eigh_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
bool eigenvectors, const Tensor& L, const Tensor& V);
std::tuple<Tensor, Tensor> triangular_solve_backward(
const Tensor & grad_x, const Tensor & grad_m,
const Tensor & b, const Tensor & a, const Tensor & x,
const bool upper, const bool transpose, const bool unitriangular,
std::array<bool, 2> output_mask);
Tensor triangular_solve_jvp(
const Tensor& X, const Tensor& A,
const Tensor& dA, const Tensor& dB,
const bool upper,
const bool transpose,
const bool unitriangular
);
Tensor linalg_solve_triangular_forward_AD(
const Tensor& A_t,
const Tensor& B_t,
const Tensor& A,
const Tensor& X,
const bool upper,
const bool left,
const bool unitriangular);
std::tuple<Tensor, Tensor> linalg_solve_triangular_backward(
const Tensor& grad,
const Tensor& A,
const Tensor& X,
const bool upper,
const bool left,
const bool unitriangular,
std::array<bool, 2> output_mask);
std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(const Tensor& grad_out, const Tensor& i1, const Tensor& i2, const Tensor& i3,
IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3,
IntArrayRef sumdim, std::array<bool, 3> grad_mask);
std::tuple<Tensor, Tensor> linalg_qr_jvp(
const Tensor& dA,
const Tensor& Q,
const Tensor& R
);
Tensor linalg_qr_jvp_Q(
const Tensor& dA,
const Tensor& Q,
const Tensor& R
);
Tensor linalg_qr_jvp_R(
const Tensor& dA,
const Tensor& Q,
const Tensor& R
);
Tensor linalg_qr_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
c10::string_view mode, const Tensor& Q, const Tensor& R);
Tensor eig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self,
bool eigenvectors, const Tensor& lambda, const Tensor& v);
Tensor linalg_matrix_exp_differential(const Tensor& self, const Tensor& grad, bool adjoint);
Tensor linalg_det_backward(const Tensor & grad, const Tensor& self, const Tensor& det);
std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward(
const Tensor & input,
const c10::optional<Tensor> & gamma,
const Tensor & ggI,
const Tensor & ggG,
const Tensor & ggB,
const Tensor & gO,
const c10::optional<Tensor> & running_mean,
const c10::optional<Tensor> & running_var,
bool training,
double eps,
const c10::optional<Tensor> & save_mean,
const c10::optional<Tensor> & save_invstd,
std::array<bool,3> output_mask);
std::tuple<Tensor, Tensor> _euclidean_dist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, const Tensor & res);
Tensor kl_div_target_backward(Tensor grad_output, Tensor self, Tensor target, int64_t reduction, bool log_target);
Tensor fft_backward(const Tensor& self, const Tensor& grad, int64_t signal_ndim,
bool complex_input, bool complex_output,
bool inverse, IntArrayRef checked_signal_sizes,
int64_t normalization, bool onesided,
IntArrayRef output_sizes);
Tensor fft_r2c_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization,
bool onesided, int64_t last_dim_size);
Tensor fft_c2r_backward(const Tensor& grad, IntArrayRef dim, int64_t normalization);
Tensor constant_pad_nd_backward(const Tensor& grad, IntArrayRef pad);
std::tuple<Tensor, Tensor> cholesky_solve_backward(
const Tensor& grad_x, const Tensor& self,
const Tensor& input2, const Tensor& result, const bool upper);
Tensor cholesky_solve_jvp(
const Tensor& X,
const Tensor& U,
const Tensor& dU,
const Tensor& dB,
const bool upper
);
std::tuple<Tensor, Tensor, Tensor>
infinitely_differentiable_native_group_norm_backward(
const Tensor& dY,
const Tensor& dmean,
const Tensor& drstd,
const Tensor& X,
const Tensor& mean,
const Tensor& rstd,
const c10::optional<Tensor>& gamma,
int64_t N,
int64_t C,
int64_t HxW,
int64_t group,
double eps,
std::array<bool, 3> grad_input_mask);
std::tuple<Tensor, Tensor, Tensor> prelu_double_backward(
const Tensor & grad_grad_input,
const Tensor & grad_grad_weight,
const Tensor & grad_out,
const Tensor & input_,
const Tensor & weight_);
Tensor as_strided_backward(Tensor grad, TensorGeometry input_geometry, IntArrayRef sizes, IntArrayRef strides, optional<int64_t> storage_offset_);
std::tuple<Tensor, Tensor> atan2_backward(const Tensor& grad, const Tensor& self, const Tensor& other, std::array<bool, 2> output_mask);
std::tuple<Tensor, Tensor, Tensor> layer_norm_double_backward(
const Tensor & input,
const c10::optional<Tensor> & gamma,
const Tensor & ggI,
const Tensor & ggG,
const Tensor & ggB,
const Tensor & gO,
const Tensor & save_mean,
const Tensor & save_invstd,
IntArrayRef normalized_shape,
std::array<bool,3> output_mask);
std::tuple<Tensor, Tensor> householder_product_backward(const Tensor& grad, const Tensor& result, const Tensor& input, const Tensor& tau);
Tensor householder_product_jvp(
const Tensor& dV,
const Tensor& dtau,
const Tensor& prod,
const Tensor& V,
const Tensor& tau
);
std::tuple<Tensor, Tensor> polar_backward(
const Tensor& grad,
const Tensor& result);
Tensor i1_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& result);
Tensor i1e_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& result);
std::tuple<Tensor, Tensor> lu_solve_backward(
const Tensor& grad,
const Tensor& X,
const Tensor& LU_data,
const Tensor& LU_pivots,
const std::array<bool, 2>& grad_input_mask
);
Tensor lu_solve_jvp(
const Tensor& X,
const Tensor& LU_data,
const Tensor& dLU_data,
const Tensor& dB,
const Tensor& LU_pivots
);
Tensor lu_unpack_backward(
const variable_list& grads,
const Tensor& LU_data,
bool unpack_data
);
Tensor _det_lu_based_helper_backward(
const Tensor& det_grad,
const Tensor& det,
const Tensor& self,
const Tensor& lu,
const Tensor& pivs
);
std::tuple<Tensor, Tensor> linalg_lstsq_backward(
const Tensor& grad,
const Tensor& A,
const Tensor& B,
const c10::optional<double> rcond,
const c10::optional<c10::string_view> driver,
const std::array<bool, 2>& grad_input_mask
);
Tensor lu_backward_base(
const variable_list& grads,
const Tensor& self,
const Tensor& P,
const Tensor& L,
const Tensor& U
);
Tensor _lu_with_info_backward(
const Tensor& grad,
const Tensor& self,
const Tensor& LU,
const Tensor& pivs
);
Tensor _lu_with_info_jvp(
const Tensor& dX,
const Tensor& LU,
const Tensor& pivs
);
Tensor cat_jvp(at::TensorList tensors, int64_t dim);
Tensor stack_jvp(at::TensorList tensors, int64_t dim);
Tensor cumprod_jvp(Tensor self_t, Tensor self_p, Tensor result, int dim);
Tensor gather_with_keepdimed_indices(const Tensor& input, int64_t dim, const Tensor& indices, bool keepdim);
Tensor evenly_read_jvp(const Tensor& fw_grad, const Tensor & input, const Tensor & value);
Tensor warn_backwards(const Tensor &grad_output);
} // namespace details
} // namespace generated
} // namespace autograd
} // namespace torch