forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_complex.py
29 lines (23 loc) · 1.21 KB
/
test_complex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Owner(s): ["module: complex"]
import torch
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.common_dtype import get_all_complex_dtypes
devices = (torch.device('cpu'), torch.device('cuda:0'))
class TestComplexTensor(TestCase):
@dtypes(*get_all_complex_dtypes())
def test_to_list(self, device, dtype):
# test that the complex float tensor has expected values and
# there's no garbage value in the resultant list
self.assertEqual(torch.zeros((2, 2), device=device, dtype=dtype).tolist(), [[0j, 0j], [0j, 0j]])
@dtypes(torch.float32, torch.float64)
def test_dtype_inference(self, device, dtype):
# issue: https://github.com/pytorch/pytorch/issues/36834
default_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
x = torch.tensor([3., 3. + 5.j], device=device)
torch.set_default_dtype(default_dtype)
self.assertEqual(x.dtype, torch.cdouble if dtype == torch.float64 else torch.cfloat)
instantiate_device_type_tests(TestComplexTensor, globals())
if __name__ == '__main__':
run_tests()