forked from cdoersch/elementdiscovery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdispClassifier.m
executable file
·129 lines (126 loc) · 5.44 KB
/
dispClassifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
% Generate a heatmap display of the classifier, which shows the pixels in
% the image that were most influential. Basically finds which dimensions
% of the image descriptor were most influential and back-projects them to
% the max firing within each region of the spatial pyramid. Note that this
% tends to generate a sparse representation of textured regions. This is
% different from the visualization on the website, (that one does more to smooth
% the detections and counts all detections, rather than just the max ones).
%
% Note that you may need to adjust the scaling of the contributions on
% lines 108-109 before the heatmaps look good. This function does not do
% that adjustment automatically because we want the heatmap values to be
% comparable across images.
%
% detr: element detectors
% im: image
% svm: final SVM
% feattransf: a function which converts max-pooled responses into a feature
% vector suitable for svm classification.
% dets: topn detections for each detector in detr
% dispimset: index of the image set where dets came from (note: in general,
% im was loaded from the test images, dets are from training images.
% displayname: prefix for saving the displays
function [posheatmap, negheatmap] = dispClassifier(detr, im, svm, feattransf,dets,displayname,dispimset)
try
global ds;
% first, re-generate the image descriptor. As we find detections, add them to
% the heat map.
pyramid = constructFeaturePyramid(im, ds.conf.params);
[features, levels, indexes,gradsums] = unentanglePyramid(pyramid, ...
ds.conf.params.patchCanonicalSize/ds.conf.params.sBins-2);
invalid=(gradsums<9);
size(features)
features(invalid,:)=[];
levels(invalid)=[];
indexes(invalid,:)=[];
gradsums(invalid)=[];
disp(['threw out ' num2str(sum(invalid)) ' patches']);
patsz=ds.conf.params.patchCanonicalSize;
fsz=(patsz-2*ds.conf.params.sBins)/ds.conf.params.sBins;
pos=pyridx2pos(indexes,reshape(levels,[],1),fsz,pyramid);
posy=(pos.y1 + pos.y2)/2+.000001;
posx=(pos.x1 + pos.x2)/2+.000001;
posheatmap=zeros(size(im(:,:,1)));
negheatmap=zeros(size(posheatmap));
idx=1;
feature=zeros(5,size(detr.w,1));
wmat=reshape(svm.w,5,[]);
for(i=[-1 1])
for(j=[-1 1]);
posidx=find(i*(posy-size(im,1)/2) > 0 & j*(posx-size(im,2)/2) > 0);
[assignedidx,dist]=assigntoclosest(detr.w,features(i*(posy-size(im,1)/2) > 0 & j*(posx-size(im,2)/2) > 0,:),1);
dist=dist(:)-detr.b;
posidx2=posidx(assignedidx);
posmat=[pos.x1 pos.y1 pos.x2 pos.y2];
posmat2=posmat(i*(posy-size(im,1)/2) > 0 & j*(posx-size(im,2)/2) > 0,:);
if(exist('feattransf','var'))
dist=feattransf(dist')';
end
feature(idx,:)=dist(:)';
assignedidxall{idx}=assignedidx;
posall{idx}=posmat2(assignedidx,:);
wt=dist(:)'.*wmat(idx,:);
posheatmap=posheatmap+genheatmap(wt(wt>0)',posmat2(assignedidx(wt>0),:),size(posheatmap));
negheatmap=negheatmap+genheatmap(-wt(wt<0)',posmat2(assignedidx(wt<0),:),size(posheatmap));
idx=idx+1;
end
end
[feature(end,:),maxpos]=max(feature(1:end-1,:),[],1);
wt=feature(end,:).*wmat(end,:);
for(i=1:4)
posheatmap=posheatmap+genheatmap(wt(wt>0&maxpos==i)',posall{i}(wt>0&maxpos==i,:),size(posheatmap));
negheatmap=negheatmap+genheatmap(-wt(wt<0&maxpos==i)',posall{i}(wt<0&maxpos==i,:),size(posheatmap));
end
hm=posheatmap-negheatmap-svm.rho/numel(posheatmap);
posheatmap=hm.*(hm>0);
negheatmap=-hm.*(hm<0);
% if we got detections as an argument, generate two displays to show the ones
% that contributed most to this detection: one for negative contributions,
% one for positive.
if(nargin>4)
currimset=ds.conf.currimset;
if(exist('dispimset','var'))
ds.conf.currimset=dispimset;%assume imgs is loaded; don't want to run dsup.
end
contrib=sum(feature.*wmat,1);
[wt,todisp]=maxk(contrib,25);
todisp(wt<0)=[];
wt(wt<0)=[];
todisp=detr.id(todisp);
dsup([displayname '_pos.patchimg'],extractpatches(dets(ismember(dets(:,6),todisp),:)));
conf=struct('dets',dets(ismember(dets(:,6),todisp),:),'detrord',todisp,...
'message',{cellfun(@(x) ['contribution:' num2str(x)],num2cell(wt),'UniformOutput',false)});
mhprender('patchdisplay.mhp',[displayname '_pos.displayhtml'],conf);
[wt,todisp]=mink(contrib,50);
todisp(wt>0)=[];
wt(wt>0)=[];
todisp=detr.id(todisp);
dsup([displayname '_neg.patchimg'],extractpatches(dets(ismember(dets(:,6),todisp),:)));
conf=struct('dets',dets(ismember(dets(:,6),todisp),:),'detrord',todisp,...
'message',{cellfun(@(x) ['contribution:' num2str(x)],num2cell(wt),'UniformOutput',false)});
mhprender('patchdisplay.mhp',[displayname '_neg.displayhtml'],conf);
if(exist('dispimset','var'))
ds.conf.currimset=currimset;
end
end
feature=feature(:);
im=repmat(rgb2gray(im),[1,1,3]);
if(dsbool(ds.conf.params,'ovlweight'))
weight=1000;
else
weight=2000;
end
posheatmap=heatmap2jet(posheatmap*weight)*.5+im*.5;
negheatmap=heatmap2jet(negheatmap*weight)*.5+im*.5;
catch ex,dsprinterr;end
end
function res=heatmap2jet(heatmap)
cmp=colormap('jet');
res=zeros([size(heatmap) 3]);
heatmap=round(heatmap*size(cmp,1));
heatmap(heatmap<1)=1;
heatmap(heatmap>size(cmp,1))=size(cmp,1);
for(chan=1:3)
res(:,:,chan)=reshape(cmp(heatmap,chan),size(heatmap));
end
end