-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHISDAC-ES_residential_layers_fast.py
169 lines (137 loc) · 7.3 KB
/
HISDAC-ES_residential_layers_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 10 16:47:27 2023
@author: Johannes H. Uhl, University of Colorado Boulder, USA.
"""
import os,sys
import subprocess
import geopandas as gp
import numpy as np
from osgeo import gdal
import scipy.stats
import time
#################################################################################################################
ES_building_centroids_merged = 'ES_building_centroids_merged.shp' #path to shp with country-level building centroids. to be created with HISDAC-ES_muni_stats.py
surface_folder=r'H:\SPAIN_DATA\ES_buildings_raster_laea' #folder to store output tifs.
gdal_edit = r'gdal_edit.py' #path to gdal_edit
gdalwarp = r'C:\OSGeo4W\bin\gdalwarp.exe'#path to gdalwarp
stepsize=10 #tine interval between epochs
years=np.arange(1900,2021,stepsize) #time range
resample_factor=100 #set to resolution of template_raster
template_raster = 'template_epsg3035_100m.tif'
crs_grid = 3035 #epsg of template_raster
#################################################################################################################
def gdalNumpy2floatRaster_compressed(array,outname,template_georef_raster,x_pixels,y_pixels,px_type):
dst_filename = outname
driver = gdal.GetDriverByName('GTiff')
dataset = driver.Create(dst_filename,x_pixels, y_pixels, 1, px_type)
dataset.GetRasterBand(1).WriteArray(array)
mapraster = gdal.Open(template_georef_raster, gdal.GA_ReadOnly)
proj=mapraster.GetProjection() #you can get from a existing tif or import
dataset.SetProjection(proj)
dataset.FlushCache()
dataset=None
#set bounding coords
ulx, xres, xskew, uly, yskew, yres = mapraster.GetGeoTransform()
lrx = ulx + (mapraster.RasterXSize * xres)
lry = uly + (mapraster.RasterYSize * yres)
mapraster = None
gdal_cmd = gdal_edit+' -a_ullr %s %s %s %s "%s"' % (ulx,uly,lrx,lry,outname)
print(gdal_cmd)
response=subprocess.check_output(gdal_cmd, shell=True)
print(response)
outname_lzw=outname.replace('.tif','_lzw.tif')
gdal_translate = r'gdal_translate %s %s -co COMPRESS=LZW' %(outname,outname_lzw)
print(gdal_translate)
response=subprocess.check_output(gdal_translate, shell=True)
print(response)
os.remove(outname)
os.rename(outname_lzw,outname)
#################################################################################################################
xcoo_col,ycoo_col = 'x','y'
raster = gdal.Open(template_raster)
cols = raster.RasterXSize
rows = raster.RasterYSize
geotransform = raster.GetGeoTransform()
topleftX = geotransform[0]
topleftY = geotransform[3]
pixelWidth = int(abs(geotransform[1]))
pixelHeight = int(abs(geotransform[5]))
rasterrange=[[topleftX,topleftX+pixelWidth*cols],[topleftY-pixelHeight*rows,topleftY]]
del raster
statistic=np.nansum
bitdepth=gdal.GDT_Int32
yearlist=list(years)
starttime=time.time()
indf = gp.read_file(ES_building_centroids_merged)
indf = indf[indf.lu_harm=='residential']
if not indf.crs.to_epsg()==crs_grid:
indf.geometry = indf.geometry.to_crs(epsg=crs_grid)
indf[xcoo_col]=indf.geometry.x
indf[ycoo_col]=indf.geometry.y
### delete irrelevant columns to reduce file size
del indf['num_floors']
del indf['num_dwel']
del indf['num_bunits']
### rasterize the increments (ie newly built-up per time period defined by stepsize)
for year in years:
if year==1900:
lower_year=1
else:
lower_year=year-stepsize
yrdf = indf[np.logical_and(indf['yearbuilt']<=year,indf.yearbuilt>lower_year)]
if len(yrdf)==0:
continue
statistic_str='resonlysum_%s_%s' %(year,lower_year)
out_surface_bia =np.zeros((cols,rows),dtype=np.uint16)
out_surface_bufa =np.zeros((cols,rows),dtype=np.uint16)
target_variable='area'
yrdf[target_variable]=yrdf[target_variable].map(float).map(np.int32)
yrdf=yrdf[yrdf[target_variable]>0]
yrdf = yrdf.dropna(subset=[target_variable])
#yrdf=yrdf[[xcoo_col,ycoo_col,target_variable]]
statsvals = yrdf[target_variable].values.astype(np.int32)
curr_surface = scipy.stats.binned_statistic_2d(yrdf[xcoo_col].values,yrdf[ycoo_col].values,statsvals,statistic,bins=[cols,rows],range=rasterrange).statistic
curr_surface = np.nan_to_num(curr_surface).astype(np.int32)
out_surface_bufa = np.add(out_surface_bufa,curr_surface)
del curr_surface
target_variable='offi_area'
yrdf[target_variable]=yrdf[target_variable].str.replace(',','.')
yrdf[target_variable]=yrdf[target_variable].map(float).map(np.int32)
yrdf=yrdf[yrdf[target_variable]>0]
yrdf = yrdf.dropna(subset=[target_variable])
#yrdf=yrdf[[xcoo_col,ycoo_col,target_variable]]
statsvals = yrdf[target_variable].values.astype(np.int32)
curr_surface = scipy.stats.binned_statistic_2d(yrdf[xcoo_col].values,yrdf[ycoo_col].values,statsvals,statistic,bins=[cols,rows],range=rasterrange).statistic
curr_surface = np.nan_to_num(curr_surface).astype(np.int32)
out_surface_bia = np.add(out_surface_bia,curr_surface)
del curr_surface
print(year,'resbia,resbufa')
gdalNumpy2floatRaster_compressed(np.rot90(out_surface_bia),surface_folder+os.sep+'ES_buildings_%s_%s_%s_increment.tif' %('resbia',statistic_str,resample_factor),template_raster,cols,rows,bitdepth)
gdalNumpy2floatRaster_compressed(np.rot90(out_surface_bufa),surface_folder+os.sep+'ES_buildings_%s_%s_%s_increment.tif' %('resbufa',statistic_str,resample_factor),template_raster,cols,rows,bitdepth)
del out_surface_bia,out_surface_bufa
##### now merge the increments to cumulative counts:
for year in years:
if year ==1900:
lower_year=1
else:
lower_year=year-stepsize
statistic_str='resonlysum_%s_%s' %(year,lower_year)
curr_bia_incr = surface_folder+os.sep+'ES_buildings_%s_%s_%s_increment.tif' %('resbia',statistic_str,resample_factor)
statistic_str='resonlysum_%s' %(year)
curr_bia_cum = surface_folder+os.sep+'ES_buildings_%s_%s_%s_cum.tif' %('resbia',statistic_str,resample_factor)
statistic_str='resonlysum_%s_%s' %(year,lower_year)
curr_area_incr = surface_folder+os.sep+'ES_buildings_%s_%s_%s_increment.tif' %('resbufa',statistic_str,resample_factor)
statistic_str='resonlysum_%s' %(year)
curr_area_cum = surface_folder+os.sep+'ES_buildings_%s_%s_%s_cum.tif' %('resbufa',statistic_str,resample_factor)
curr_bia_incr_arr=gdal.Open(curr_bia_incr).ReadAsArray()
curr_area_incr_arr=gdal.Open(curr_area_incr).ReadAsArray()
if year==1900:
total_bia_surface=curr_bia_incr_arr.copy()
total_area_surface=curr_area_incr_arr.copy()
else:
total_bia_surface=total_bia_surface+curr_bia_incr_arr
total_area_surface=total_area_surface+curr_area_incr_arr
gdalNumpy2floatRaster_compressed(total_bia_surface,curr_bia_cum,template_raster,cols,rows,bitdepth)
gdalNumpy2floatRaster_compressed(total_area_surface,curr_area_cum,template_raster,cols,rows,bitdepth)
print('cumulative %s' %year)