diff --git a/docs/api/python/ndarray/sparse.md b/docs/api/python/ndarray/sparse.md index a7aaa1fd41d4..df335702aba5 100644 --- a/docs/api/python/ndarray/sparse.md +++ b/docs/api/python/ndarray/sparse.md @@ -484,6 +484,7 @@ We summarize the interface for each class in the following sections. sgd_mom_update adam_update ftrl_update + adagrad_update ``` ### More diff --git a/python/mxnet/optimizer.py b/python/mxnet/optimizer.py index 065c08cee4e0..6589e77e453c 100644 --- a/python/mxnet/optimizer.py +++ b/python/mxnet/optimizer.py @@ -27,8 +27,6 @@ from .ndarray import (sgd_update, sgd_mom_update, adam_update, rmsprop_update, rmspropalex_update, mp_sgd_update, mp_sgd_mom_update, square, ftrl_update, ftml_update, signsgd_update, signum_update) -from .ndarray import _internal -from .ndarray import op from .ndarray import sparse from .random import normal @@ -1073,6 +1071,10 @@ class AdaGrad(Optimizer): This optimizer accepts the following parameters in addition to those accepted by :class:`.Optimizer`. + See Also + ---------- + :meth:`mxnet.ndarray.sparse.adagrad_update`. + Parameters ---------- eps: float, optional @@ -1093,39 +1095,19 @@ def update(self, index, weight, grad, state): lr = self._get_lr(index) wd = self._get_wd(index) - is_sparse = True if weight.stype == 'row_sparse' and grad.stype == 'row_sparse' else False - - if is_sparse is True: - grad_indices_count = len(grad.indices) - - grad = grad * self.rescale_grad - - if is_sparse is True: - grad_indices = grad.indices - # Make sure that the scalar multiply still has a sparse result - assert grad_indices_count == len(grad_indices) - - if self.clip_gradient is not None: - grad = clip(grad, -self.clip_gradient, self.clip_gradient) + is_sparse = weight.stype == 'row_sparse' and grad.stype == 'row_sparse' history = state - save_history_stype = history.stype if is_sparse: - history[:] = sparse.elemwise_add(sparse.square(grad), - sparse.retain(history, grad_indices)) - history_indices = history.indices - assert len(history_indices) == grad_indices_count - adjusted_add = _internal._scatter_plus_scalar(history, self.float_stable_eps) - srt = op.sqrt(adjusted_add) - div = _internal._scatter_elemwise_div(grad, srt) - retained_weight = sparse.retain(weight, grad.indices) - to_add = sparse.elemwise_add(div, _internal._mul_scalar(retained_weight, float(wd))) - assert len(to_add.indices) == grad_indices_count - weight[:] = sparse.elemwise_add(weight, _internal._mul_scalar(to_add, float(-lr))) - state[:] = history - assert state.stype == save_history_stype - assert len(history_indices) == grad_indices_count + kwargs = {'epsilon': self.float_stable_eps, + 'rescale_grad': self.rescale_grad} + if self.clip_gradient: + kwargs['clip_gradient'] = self.clip_gradient + sparse.adagrad_update(weight, grad, history, out=weight, lr=lr, wd=wd, **kwargs) else: + grad = grad * self.rescale_grad + if self.clip_gradient is not None: + grad = clip(grad, -self.clip_gradient, self.clip_gradient) history[:] += square(grad) div = grad / sqrt(history + self.float_stable_eps) weight[:] += (div + weight * wd) * -lr diff --git a/src/operator/optimizer_op-inl.h b/src/operator/optimizer_op-inl.h index 89d27e17ec63..55d215602eef 100644 --- a/src/operator/optimizer_op-inl.h +++ b/src/operator/optimizer_op-inl.h @@ -1483,7 +1483,153 @@ inline void SignumUpdate(const nnvm::NodeAttrs& attrs, }); } +struct AdagradParam : public dmlc::Parameter { + float lr; + float epsilon; + float rescale_grad; + float clip_gradient; + float wd; + DMLC_DECLARE_PARAMETER(AdagradParam) { + DMLC_DECLARE_FIELD(lr) + .describe("Learning rate"); + DMLC_DECLARE_FIELD(epsilon) + .set_default(1.0e-7) + .describe("epsilon"); + DMLC_DECLARE_FIELD(wd) + .set_default(0.0f) + .describe("weight decay"); + DMLC_DECLARE_FIELD(rescale_grad) + .set_default(1.0f) + .describe("Rescale gradient to grad = rescale_grad*grad."); + DMLC_DECLARE_FIELD(clip_gradient) + .set_default(-1.0f) + .describe("Clip gradient to the range of [-clip_gradient, clip_gradient] " + "If clip_gradient <= 0, gradient clipping is turned off. " + "grad = max(min(grad, clip_gradient), -clip_gradient)."); + } +}; + +inline bool AdagradStorageType(const nnvm::NodeAttrs& attrs, + const int dev_mask, + DispatchMode* dispatch_mode, + std::vector* in_attrs, + std::vector* out_attrs) { + CHECK_EQ(in_attrs->size(), 3U); + CHECK_EQ(out_attrs->size(), 1U); + const AdagradParam& param = nnvm::get(attrs.parsed); + bool dispatched = false; + if (!dispatched && common::ContainsOnlyStorage(*in_attrs, kRowSparseStorage) && + common::ContainsOnlyStorage(*in_attrs, kRowSparseStorage) && + param.wd == 0.0f) { + // rsp, rsp, rsp -> rsp with wd = 0.0 + dispatched = storage_type_assign(out_attrs, kRowSparseStorage, + dispatch_mode, DispatchMode::kFComputeEx); + } + return dispatched; +} + + +struct AdagradDnsRspDnsKernel { + template + MSHADOW_XINLINE static void Map(int i, index_t row_length, DType* out_data, + DType* state_data, const DType* weight_data, const IType* grad_idx, + const DType* grad_data, const DType clip_gradient, const DType epsilon, + const DType lr, const DType rescale_grad) { + using nnvm::dim_t; + using namespace mshadow_op; + const dim_t data_i = grad_idx[i] * row_length; + const dim_t grad_i = i * row_length; + for (dim_t j = 0; j < row_length; j++) { + const dim_t data_j = data_i + j; + const dim_t grad_j = grad_i + j; + DType grad_rescaled = grad_data[grad_j] * rescale_grad; + if (clip_gradient >= 0.0f) { + grad_rescaled = clip::Map(grad_rescaled, clip_gradient); + } + const DType grad_squared = grad_rescaled * grad_rescaled; + state_data[data_j] += grad_squared; + const DType div = grad_rescaled / square_root::Map(state_data[data_j] + epsilon); + // No need to use KERNEL_ASSIGN, as we already checked req is kWriteInplace + out_data[data_j] = weight_data[data_j] - div * lr; + } + } +}; +template +void AdagradUpdateDnsRspDnsImpl(const AdagradParam& param, + const OpContext& ctx, + const TBlob& weight, + const NDArray& grad, + const TBlob& state, + const OpReqType& req, + TBlob *out) { + using namespace mxnet_op; + using namespace rowsparse; + using namespace mshadow; + Stream* s = ctx.get_stream(); + CHECK_EQ(param.wd, 0.0f) + << "sparse adagrad_update does not support wd."; + if (req == kNullOp || !grad.storage_initialized()) return; + CHECK_EQ(req, kWriteInplace) << "kWriteInplace is expected for sparse adagrad_update"; + CHECK_GT(weight.shape_.Size(), 0); + CHECK_GT(state.shape_.Size(), 0); + MSHADOW_REAL_TYPE_SWITCH(weight.type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(grad.aux_type(kIdx), IType, { + const DType* weight_data = weight.dptr(); + const IType* grad_idx = grad.aux_data(kIdx).dptr(); + const DType* grad_val = grad.data().dptr(); + DType* state_data = state.dptr(); + DType* out_data = out->dptr(); + const nnvm::dim_t nnr = grad.storage_shape()[0]; + const auto row_length = weight.shape_.ProdShape(1, weight.ndim()); + Kernel::Launch(s, nnr, row_length, + out_data, state_data, weight_data, grad_idx, grad_val, + static_cast(param.clip_gradient), static_cast(param.epsilon), + static_cast(param.lr), static_cast(param.rescale_grad)); + }); + }); +} + +template +inline void AdagradUpdateRspRspRspImpl(const AdagradParam& param, + const OpContext& ctx, + const NDArray& weight, + const NDArray& grad, + const NDArray& state, + const OpReqType& req, + NDArray *out) { + using namespace mshadow; + using namespace mxnet_op; + using namespace rowsparse; + CHECK_RSP_ALL_ROWS_NON_ZERO(weight, "AdagradUpdate", "weights"); + Stream* s = ctx.get_stream(); + // fill history with zero values + if (!state.storage_initialized()) { + NDArray state_zeros = state; + FillDnsZerosRspImpl(s, &state_zeros); + } + TBlob out_blob = out->data(); + // reuse dns rsp implementation when storage_shape == shape + AdagradUpdateDnsRspDnsImpl(param, ctx, weight.data(), grad, + state.data(), req, &out_blob); +} + +template +inline void AdagradUpdateEx(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mxnet_op; + const AdagradParam& param = nnvm::get(attrs.parsed); + if (common::ContainsOnlyStorage(inputs, kRowSparseStorage) && + common::ContainsOnlyStorage(outputs, kRowSparseStorage)) { + NDArray out = outputs[0]; + AdagradUpdateRspRspRspImpl(param, ctx, inputs[0], inputs[1], inputs[2], req[0], &out); + } else { + LogUnimplementedOp(attrs, ctx, inputs, req, outputs); + } +} } // namespace op } // namespace mxnet diff --git a/src/operator/optimizer_op.cc b/src/operator/optimizer_op.cc index 136769a1bf01..741092ad7844 100644 --- a/src/operator/optimizer_op.cc +++ b/src/operator/optimizer_op.cc @@ -38,6 +38,7 @@ DMLC_REGISTER_PARAMETER(RMSPropAlexParam); DMLC_REGISTER_PARAMETER(FtrlParam); DMLC_REGISTER_PARAMETER(SignSGDParam); DMLC_REGISTER_PARAMETER(SignumParam); +DMLC_REGISTER_PARAMETER(AdagradParam); NNVM_REGISTER_OP(signsgd_update) .describe(R"code(Update function for SignSGD optimizer. @@ -536,5 +537,36 @@ only the row slices whose indices appear in grad.indices are updated (for w, z a .add_argument("n", "NDArray-or-Symbol", "Square of grad") .add_arguments(FtrlParam::__FIELDS__()); +NNVM_REGISTER_OP(_sparse_adagrad_update) +.describe(R"code(Update function for AdaGrad optimizer. + +Referenced from *Adaptive Subgradient Methods for Online Learning and Stochastic Optimization*, +and available at http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf. + +Updates are applied by:: + + rescaled_grad = clip(grad * rescale_grad, clip_gradient) + history = history + square(rescaled_grad) + w = w - learning_rate * rescaled_grad / sqrt(history + epsilon) + +Note that non-zero values for the weight decay option are not supported. + +)code" ADD_FILELINE) +.set_num_inputs(3) +.set_num_outputs(1) +.set_attr_parser(ParamParser) +.set_attr("FInferShape", ElemwiseShape<3, 1>) +.set_attr("FInferType", ElemwiseType<3, 1>) +.set_attr("FInferStorageType", AdagradStorageType) +.set_attr("FMutateInputs", + [](const nnvm::NodeAttrs& attrs) { + return std::vector{2}; + }) +.set_attr("FComputeEx", AdagradUpdateEx) +.add_argument("weight", "NDArray-or-Symbol", "Weight") +.add_argument("grad", "NDArray-or-Symbol", "Gradient") +.add_argument("history", "NDArray-or-Symbol", "History") +.add_arguments(AdagradParam::__FIELDS__()); + } // namespace op } // namespace mxnet diff --git a/src/operator/optimizer_op.cu b/src/operator/optimizer_op.cu index 1bd6117432bf..c49af68a5f68 100644 --- a/src/operator/optimizer_op.cu +++ b/src/operator/optimizer_op.cu @@ -200,5 +200,8 @@ NNVM_REGISTER_OP(ftrl_update) .set_attr("FCompute", FtrlUpdate) .set_attr("FComputeEx", FtrlUpdateEx); +NNVM_REGISTER_OP(_sparse_adagrad_update) +.set_attr("FComputeEx", AdagradUpdateEx); + } // namespace op } // namespace mxnet diff --git a/tests/python/unittest/test_optimizer.py b/tests/python/unittest/test_optimizer.py index 159c9bac89d9..f71e2c81e27e 100644 --- a/tests/python/unittest/test_optimizer.py +++ b/tests/python/unittest/test_optimizer.py @@ -963,6 +963,74 @@ def get_net(num_hidden, flatten=True): optimizer='nadam') assert mod.score(data_iter, eval_metric=mx.metric.Loss())[0][1] < 0.1 +# AdaGrad +class PyAdaGrad(mx.optimizer.Optimizer): + """The python reference of AdaGrad optimizer. + + This class implements the AdaGrad optimizer described in *Adaptive Subgradient + Methods for Online Learning and Stochastic Optimization*, and available at + http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf. + + Updates are applied by:: + + rescaled_grad = clip(grad * rescale_grad + wd * weight, clip_gradient) + history = history + square(rescaled_grad) + w = w - learning_rate * rescaled_grad / sqrt(history + epsilon) + + This optimizer accepts the following parameters in addition to those accepted + by :class:`.Optimizer`. + + Parameters + ---------- + eps: float, optional + Small value to avoid division by 0. + + """ + def __init__(self, eps=1e-7, **kwargs): + super(PyAdaGrad, self).__init__(**kwargs) + self.float_stable_eps = eps + + def create_state(self, index, weight): + return mx.nd.zeros(weight.shape, weight.context, stype=weight.stype) + + def update(self, index, weight, grad, state): + self._update_count(index) + lr = self._get_lr(index) + wd = self._get_wd(index) + + history = state + grad = grad * self.rescale_grad + if self.clip_gradient is not None: + grad = mx.nd.clip(grad, -self.clip_gradient, self.clip_gradient) + history[:] += mx.nd.square(grad) + div = grad / mx.nd.sqrt(history + self.float_stable_eps) + weight[:] += (div + weight * wd) * -lr + +def test_adagrad(): + mx.random.seed(0) + opt1 = PyAdaGrad + opt2 = mx.optimizer.AdaGrad + shape = (3, 4, 5) + eps_options = [{}, {'eps': 1e-8}] + cg_options = [{}, {'clip_gradient': 0.4}, {'clip_gradient': 0.5}] + rg_options = [{}, {'rescale_grad': 0.14}, {'rescale_grad': 0.8}] + wd_options = [{}, {'wd': 0.0}] + for dtype in [np.float32]: + for eps_option in eps_options: + for cg_option in cg_options: + for rg_option in rg_options: + for wd_option in wd_options: + kwarg = {} + kwarg.update(eps_option) + kwarg.update(cg_option) + kwarg.update(rg_option) + kwarg.update(wd_option) + compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, dtype) + if wd_option.get('wd', 0.0) == 0.0: + compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, dtype, + w_stype='row_sparse', g_stype='row_sparse') + + if __name__ == '__main__': import nose