-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
247 lines (218 loc) · 11.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# ----------------------------------------------------------------------------------------------
# CoFormer Official Code
# Copyright (c) Junhyeong Cho. All Rights Reserved
# Licensed under the Apache License 2.0 [see LICENSE for details]
# ----------------------------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved [see LICENSE for details]
# ----------------------------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
import numpy as np
import torch
import datasets
import util.misc as utils
from torch.utils.data import DataLoader, DistributedSampler
from datasets import build_dataset
from engine import evaluate_swig, train_one_epoch
from models import build_model
from pathlib import Path
def get_args_parser():
parser = argparse.ArgumentParser('Set Collaborative Glance-Gaze Transformer', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--lr_drop', default=30, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--epochs', default=40, type=int)
# Backbone parameters
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--position_embedding', default='learned', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# Transformer parameters
parser.add_argument('--num_glance_enc_layers', default=3, type=int,
help="Number of encoding layers in Glance Transformer")
parser.add_argument('--num_gaze_s1_dec_layers', default=3, type=int,
help="Number of decoding layers in Gaze-Step1 Transformer")
parser.add_argument('--num_gaze_s1_enc_layers', default=3, type=int,
help="Number of encoding layers in Gaze-Step1 Transformer")
parser.add_argument('--num_gaze_s2_dec_layers', default=3, type=int,
help="Number of decoding layers in Gaze-Step2 Transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=512, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.15, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
# Loss coefficients
parser.add_argument('--noun_1_loss_coef', default=2, type=float)
parser.add_argument('--noun_2_loss_coef', default=2, type=float)
parser.add_argument('--noun_3_loss_coef', default=1, type=float)
parser.add_argument('--verb_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--bbox_conf_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=5, type=float)
# Dataset parameters
parser.add_argument('--dataset_file', default='swig')
parser.add_argument('--swig_path', type=str, default="SWiG")
parser.add_argument('--dev', default=False, action='store_true')
parser.add_argument('--test', default=False, action='store_true')
# Etc...
parser.add_argument('--inference', default=False)
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--saved_model', default='CoFormer_checkpoint.pth',
help='path where saved model is')
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# check dataset
if args.dataset_file == "swig":
from datasets.swig import collater
else:
assert False, f"dataset {args.dataset_file} is not supported now"
# build dataset
dataset_train = build_dataset(image_set='train', args=args)
args.num_noun_classes = dataset_train.num_nouns()
if not args.test:
dataset_val = build_dataset(image_set='val', args=args)
else:
dataset_test = build_dataset(image_set='test', args=args)
# build model
model, criterion = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
}
]
# optimizer & LR scheduler
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
# dataset sampler
if not args.test and not args.dev:
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
if args.dev:
if args.distributed:
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
elif args.test:
if args.distributed:
sampler_test = DistributedSampler(dataset_test, shuffle=False)
else:
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
output_dir = Path(args.output_dir)
# dataset loader
if not args.test and not args.dev:
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, num_workers=args.num_workers,
collate_fn=collater, batch_sampler=batch_sampler_train)
data_loader_val = DataLoader(dataset_val, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_val)
else:
if args.dev:
data_loader_val = DataLoader(dataset_val, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_val)
elif args.test:
data_loader_test = DataLoader(dataset_test, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_test)
# use saved model for evaluation (using dev set or test set)
if args.dev or args.test:
checkpoint = torch.load(args.saved_model, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if args.dev:
data_loader = data_loader_val
elif args.test:
data_loader = data_loader_test
test_stats = evaluate_swig(model, criterion, data_loader, device, args.output_dir)
log_stats = {**{f'test_{k}': v for k, v in test_stats.items()}}
# write log
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
return None
# train model
print("Start training")
start_time = time.time()
max_test_verb_acc_top1 = 43
for epoch in range(args.start_epoch, args.epochs):
# train one epoch
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(model, criterion, data_loader_train, optimizer,
device, epoch, args.clip_max_norm)
lr_scheduler.step()
# evaluate
test_stats = evaluate_swig(model, criterion, data_loader_val, device, args.output_dir)
# log & output
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# save checkpoint for every new max accuracy
if log_stats['test_verb_acc_top1_unscaled'] > max_test_verb_acc_top1:
max_test_verb_acc_top1 = log_stats['test_verb_acc_top1_unscaled']
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args}, checkpoint_path)
# write log
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('CoFormer training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)