-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathengine.py
108 lines (91 loc) · 4.61 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# ----------------------------------------------------------------------------------------------
# CoFormer Official Code
# Copyright (c) Junhyeong Cho. All Rights Reserved
# Licensed under the Apache License 2.0 [see LICENSE for details]
# ----------------------------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved [see LICENSE for details]
# ----------------------------------------------------------------------------------------------
"""
Train and eval functions used in main.py
"""
import math
import os
import sys
import torch
import util.misc as utils
from typing import Iterable
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
# data & target
samples = samples.to(device)
targets = [{k: v.to(device) if type(v) is not str else v for k, v in t.items()} for t in targets]
# model output & calculate loss
outputs = model(samples, targets)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
# scaled with different loss coefficients
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
# stop when loss is nan or inf
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
# loss backward & optimzer step
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate_swig(model, criterion, data_loader, device, output_dir):
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
# data & target
samples = samples.to(device)
targets = [{k: v.to(device) if type(v) is not str else v for k, v in t.items()} for t in targets]
# model output & calculate loss
outputs = model(samples, targets)
loss_dict = criterion(outputs, targets, eval=True)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
# scaled with different loss coefficients
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
return stats