-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_utils.py
151 lines (138 loc) · 5.69 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
from Template import SEP
from rouge import Rouge
import copy
def extracte_hashtags_from_sequence(seq: str):
seq = seq.strip()
if seq == 'None':
seq = ''
hashtags = seq.split(SEP)
hashtags = [ht.strip() for ht in hashtags]
results = []
for ht in hashtags:
if ht != '' and ht not in results:
results.append(ht)
return results
def recall_k(y_pred, y_true, k=1):
if k <= 0:
raise ValueError(f"k must be greater than 0."
f"{k} received.")
tp = 0.0
total = 0
true_list = copy.deepcopy(y_true)
for i in range(len(y_pred)):
total += len(y_true[i])
for j in range(len(y_pred[i])):
if j >= k:
break
if y_pred[i][j] in true_list[i]:
tp += 1
true_list[i].remove(y_pred[i][j])
return tp / total
def precision_k(y_pred, y_true, k=1):
if k <= 0:
raise ValueError(f"k must be greater than 0."
f"{k} received.")
tp = 0.0
total = 0
true_list = copy.deepcopy(y_true)
for i in range(len(y_pred)):
total += k
for j in range(len(y_pred[i])):
if j >= k:
break
if y_pred[i][j] in true_list[i]:
tp += 1
true_list[i].remove(y_pred[i][j])
return tp / total
def f1(pre, rec):
if pre == 0 and rec == 0:
return 0.0
return 2 * pre * rec / (pre + rec)
def compute_scores(out_seq, labels, language='en'):
assert len(labels) == len(out_seq)
if language == 'cn':
f1_pre_hashtags = []
f1_lab_hashtabs = []
f5_pre_hashtags = []
f5_lab_hashtabs = []
for i in range(len(labels)):
labels[i] = labels[i].strip()
# labels[i] = (labels[i] + ' ' + SEP + ' ') * 5
# labels[i] = labels[i][:(len(SEP) + 2) * (-1)].strip()
out_seq[i] = out_seq[i].strip()
f1_pre_hashtags.append([extracte_hashtags_from_sequence(out_seq[i])[0]])
f1_lab_hashtabs.append(extracte_hashtags_from_sequence(labels[i]))
f5_pre_hashtags.append(extracte_hashtags_from_sequence(out_seq[i]))
f5_lab_hashtabs.append(extracte_hashtags_from_sequence(labels[i]) * 5)
labels[i] = labels[i].replace(SEP, ' ')
out_seq[i] = out_seq[i].split(SEP)[0].strip()
labels[i] = labels[i].replace(' ', '').replace('', ' ').strip()
out_seq[i] = out_seq[i].replace(' ', '').replace('', ' ').strip()
rg = Rouge()
rouge_score = rg.get_scores(out_seq, labels, avg=True)
pre_1 = precision_k(f1_pre_hashtags, f1_lab_hashtabs, k=1)
rec_1 = recall_k(f1_pre_hashtags, f1_lab_hashtabs, k=1)
f1_1 = f1(pre_1, rec_1)
pre_5 = precision_k(f5_pre_hashtags, f5_lab_hashtabs, k=5)
rec_5 = recall_k(f5_pre_hashtags, f5_lab_hashtabs, k=5)
f1_5 = f1(pre_5, rec_5)
else:
pre_hashtags = []
lab_hashtabs = []
for i in range(len(labels)):
labels[i] = labels[i].strip()
out_seq[i] = out_seq[i].strip()
pre_hashtags.append(extracte_hashtags_from_sequence(out_seq[i]))
lab_hashtabs.append(extracte_hashtags_from_sequence(labels[i]))
labels[i] = labels[i].replace(SEP, ' ')
out_seq[i] = out_seq[i].replace(SEP, ' ')
rg = Rouge()
rouge_score = rg.get_scores(out_seq, labels, avg=True)
pre_1 = precision_k(pre_hashtags, lab_hashtabs, k=1)
rec_1 = recall_k(pre_hashtags, lab_hashtabs, k=1)
f1_1 = f1(pre_1, rec_1)
pre_5 = precision_k(pre_hashtags, lab_hashtabs, k=5)
rec_5 = recall_k(pre_hashtags, lab_hashtabs, k=5)
f1_5 = f1(pre_5, rec_5)
result = {
'rouge': rouge_score,
'precision_1': pre_1,
'recall_1': rec_1,
'f1_1': f1_1,
'precision_5': pre_5,
'recall_5': rec_5,
'f1_5': f1_5,
}
return result
if __name__ == '__main__':
# pre = ["a cat is on the table", 'a cat is on the table']
# ref = ['there is a cat on the table', 'a cat is on the table']
# rg = Rouge()
# scores = rg.get_scores(pre, ref, avg=True)
# print(scores)
# a = "ac b <extra_id_0>www "
# print(extracte_hashtags_from_sequence(a))
out_seq_path = 'outputs/THG/lr_3e-4_bs16_epoch10_simcsetunedretrieval_concattop9/test_output.txt'
out_id = []
out_seq = []
out_label = []
out_output = []
with open(out_seq_path, 'r', encoding='UTF-8') as fp:
for i in range(11328):
id = int(fp.readline())
input_seq = fp.readline()
label = fp.readline()
output = fp.readline()
out_id.append(id)
out_seq.append(input_seq)
out_label.append(label)
out_output.append(output)
results = compute_scores(out_output, out_label)
rouge_score = results['rouge']
exp_results = f"test_rouge_1_p: {rouge_score['rouge-1']['p']}; test_rouge_1_r: {rouge_score['rouge-1']['r']}; test_rouge_1_f: {rouge_score['rouge-1']['f']} \n" \
f"test_rouge_2_p: {rouge_score['rouge-2']['p']}; test_rouge_2_r: {rouge_score['rouge-2']['r']}; test_rouge_2_f: {rouge_score['rouge-2']['f']} \n" \
f"test_rouge_l_p: {rouge_score['rouge-l']['p']}; test_rouge_l_r: {rouge_score['rouge-l']['r']}; test_rouge_l_f: {rouge_score['rouge-l']['f']} \n" \
f"test_precision_1: {results['precision_1']}; test_recall_1: {results['recall_1']}; test_f1_1: {results['f1_1']} \n" \
f"test_precision_5: {results['precision_5']}; test_recall_5: {results['recall_5']}; test_f1_5: {results['f1_5']} \n"
print(exp_results)