forked from gahogg/Leetcode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHouse Robber - Leetcode 198.py
81 lines (64 loc) · 1.85 KB
/
House Robber - Leetcode 198.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Recursive Solution
class Solution:
def rob(self, nums: List[int]) -> int:
n = len(nums)
def helper(i):
if i == 0:
return nums[0]
if i == 1:
return max(nums[0], nums[1])
return max(nums[i] + helper(i-2),
helper(i-1))
return helper(n-1)
# Time: O(2^n)
# Space: O(n)
# Top Down DP (Memoization)
class Solution:
def rob(self, nums: List[int]) -> int:
n = len(nums)
if n == 1:
return nums[0]
if n == 2:
return max(nums[0], nums[1])
memo = {0:nums[0], 1:max(nums[0], nums[1])}
def helper(i):
if i in memo:
return memo[i]
else:
memo[i] = max(nums[i] + helper(i-2),
helper(i-1))
return memo[i]
return helper(n-1)
# Time: O(n)
# Space: O(n)
# Bottom Up DP (Tabulation)
class Solution:
def rob(self, nums: List[int]) -> int:
n = len(nums)
if n == 1:
return nums[0]
if n == 2:
return max(nums[0], nums[1])
dp = [0] * n
dp[0] = nums[0]
dp[1] = max(nums[0], nums[1])
for i in range(2, n):
dp[i] = max(nums[i] + dp[i-2], dp[i-1])
return dp[n-1]
# Time: O(n)
# Space: O(n)
# Bottom Up DP (Constant Space)
class Solution:
def rob(self, nums: List[int]) -> int:
n = len(nums)
if n == 1:
return nums[0]
if n == 2:
return max(nums[0], nums[1])
prev = nums[0]
curr = max(nums[0], nums[1])
for i in range(2, n):
prev, curr = curr, max(nums[i] + prev, curr)
return curr
# Time: O(n)
# Space: O(1)