-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathusing_deepseek_as_llm.py
98 lines (78 loc) · 2.98 KB
/
using_deepseek_as_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import logging
from openai import AsyncOpenAI
from nano_graphrag import GraphRAG, QueryParam
from nano_graphrag import GraphRAG, QueryParam
from nano_graphrag.base import BaseKVStorage
from nano_graphrag._utils import compute_args_hash
logging.basicConfig(level=logging.WARNING)
logging.getLogger("nano-graphrag").setLevel(logging.INFO)
DEEPSEEK_API_KEY = "sk-XXXX"
MODEL = "deepseek-chat"
async def deepseepk_model_if_cache(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
openai_async_client = AsyncOpenAI(
api_key=DEEPSEEK_API_KEY, base_url="https://api.deepseek.com"
)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
# Get the cached response if having-------------------
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(MODEL, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
# -----------------------------------------------------
response = await openai_async_client.chat.completions.create(
model=MODEL, messages=messages, **kwargs
)
# Cache the response if having-------------------
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": MODEL}}
)
# -----------------------------------------------------
return response.choices[0].message.content
def remove_if_exist(file):
if os.path.exists(file):
os.remove(file)
WORKING_DIR = "./nano_graphrag_cache_deepseek_TEST"
def query():
rag = GraphRAG(
working_dir=WORKING_DIR,
best_model_func=deepseepk_model_if_cache,
cheap_model_func=deepseepk_model_if_cache,
)
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
def insert():
from time import time
with open("./tests/mock_data.txt", encoding="utf-8-sig") as f:
FAKE_TEXT = f.read()
remove_if_exist(f"{WORKING_DIR}/vdb_entities.json")
remove_if_exist(f"{WORKING_DIR}/kv_store_full_docs.json")
remove_if_exist(f"{WORKING_DIR}/kv_store_text_chunks.json")
remove_if_exist(f"{WORKING_DIR}/kv_store_community_reports.json")
remove_if_exist(f"{WORKING_DIR}/graph_chunk_entity_relation.graphml")
rag = GraphRAG(
working_dir=WORKING_DIR,
enable_llm_cache=True,
best_model_func=deepseepk_model_if_cache,
cheap_model_func=deepseepk_model_if_cache,
)
start = time()
rag.insert(FAKE_TEXT)
print("indexing time:", time() - start)
# rag = GraphRAG(working_dir=WORKING_DIR, enable_llm_cache=True)
# rag.insert(FAKE_TEXT[half_len:])
if __name__ == "__main__":
insert()
# query()