-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize-density.py
260 lines (252 loc) · 12.2 KB
/
visualize-density.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function
import argparse, os, sys, random, time, datetime
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib.patches import Ellipse
#
import torch
import torch.nn as nn
import torch.nn.functional as F
#
from custom_models import *
from custom_datasets import *
from custom_transforms import *
from utils import *
# sklearn
from sklearn.metrics import confusion_matrix
from sklearn.manifold import TSNE
# RAPIDS AI (much faster t-SNE we used in the paper)
#from cuml import TSNE
def get_args():
parser = argparse.ArgumentParser(description='Visualization of AutoDO')
parser.add_argument('--data', default='./local_data', type=str, metavar='NAME',
help='folder to save all data')
parser.add_argument('--dataset', default='MNIST', type=str, metavar='NAME',
help='dataset MNIST/CIFAR10/CIFAR100/SVHN/SVHN_extra/ImageNet')
parser.add_argument('--workers', default=4, type=int, metavar='NUM',
help='number of data loading workers (default: 4)')
parser.add_argument("--gpu", default='0', type=str, metavar='NUM',
help='GPU device number')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--log-interval', type=int, default=500, metavar='NUM',
help='how many batches to wait before logging training status')
parser.add_argument('-ir', '--imbalance-ratio', type=int, default=1, metavar='N',
help='ratio of [1:C/2] to [C/2+1:C] labels in the training dataset drawn from uniform distribution')
parser.add_argument('-sr', '--subsample-ratio', type=float, default=1.0, metavar='N',
help='ratio of selected to total labels in the training dataset drawn from uniform distribution')
parser.add_argument('-nr', '--noise-ratio', type=float, default=0.0, metavar='N',
help='ratio of noisy (randomly flipped) labels (default: 0.0)')
parser.add_argument('-r', '--run-folder', default='run0', type=str,
help='dir to save run')
parser.add_argument('--plot-cmx', action='store_true', help='confusion matrix or TSNE')
args = parser.parse_args()
return args
def main(args):
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_cuda = not args.no_cuda and torch.cuda.is_available()
init_seeds(seed=int(time.time()))
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': args.workers, 'pin_memory': True} if use_cuda else {}
args.hyper_est = True
dataset = args.dataset
imbalance_ratio = args.imbalance_ratio
subsample_ratio = args.subsample_ratio
noise_ratio = args.noise_ratio
model_postfix = 'ir_{}_sr_{}_nr_{}'.format(imbalance_ratio, subsample_ratio, noise_ratio)
run_folder = args.run_folder
save_folder = '{}/{}'.format(args.data, dataset)
model_folder = '{}/{}'.format(save_folder, run_folder)
assert os.path.isdir(model_folder), 'Error: {} model folder is not found!'.format(model_folder)
print('model_folder:', model_folder)
plot_cmx = args.plot_cmx
results_folder = './visualizations'
if not os.path.isdir(results_folder):
os.mkdir(results_folder)
#
if dataset == 'MNIST':
total_images = 60000
valid_images = 10000
train_images = total_images - valid_images
num_classes = 10
num_channels = 1
# model:
model_name = 'resnet18'
encoder = EncoderResNet(dataset=dataset, depth=18, num_classes=num_classes).to(device)
decoder = SupCeResNet(dataset=dataset, depth=18, num_classes=num_classes).to(device)
# dataloaders
train_batch_size = 1000
test_data = MNIST(save_folder, train=False, transform=transform_test_mnist)
train_data = MNIST(save_folder, train=True, transform=transform_train_mnist)
elif dataset == 'SVHN':
total_images = 73257
valid_images = 23257
train_images = total_images - valid_images
num_classes = 10
num_channels = 3
# model:
train_batch_size = 256
model_name = 'wresnet28_10'
encoder = EncoderWideResNet(depth=28, widen_factor=10, num_classes=num_classes).to(device)
decoder = SupCeWideResNet(name=model_name, num_classes=num_classes).to(device)
# data:
test_data = SVHN(save_folder, split='test', transform=transform_test_svhn, download=True)
train_data = SVHN(save_folder, split='train', transform=transform_train_svhn, download=True)
else:
raise NotImplementedError('{} is not supported dataset!'.format(dataset))
# dataloaders:
data_file = '{}/data_{}.pt'.format(model_folder, model_postfix)
if os.path.isfile(data_file):
_, train_sub_indices, train_targets = torch.load(data_file) # load saved indices
else:
raise NotImplementedError('{} is missing!'.format(data_file))
#
valid_loader = torch.utils.data.DataLoader(test_data, batch_size=train_batch_size, shuffle=False, **kwargs)
#train_sub_data = torch.utils.data.Subset(train_data, train_sub_indices)
#train_loader = torch.utils.data.DataLoader(train_sub_data, batch_size=train_batch_size, shuffle=False, **kwargs)
#
args.train_batch_size = train_batch_size
args.num_classes = num_classes
# list model layers
for n, p in encoder.named_parameters():
print (n, p.data.shape)
F = p.data.shape[0] # last layer dimension
for n, p in decoder.named_parameters():
print (n, p.data.shape)
# hyper models
C = num_classes
T = total_images
M = len(valid_loader.dataset)
N = 0 #len(train_loader.dataset)
print('Train/Test Split: {}/{} out of total {} images'.format(M, N, T))
# CFGS:
cfgs = list()
# format: [hyper_opt, hyper_est, aug_model, los_model]
#cfgs.append(['RAND', True, 'RAND', 'NONE'])
cfgs.append(['NONE', True, 'NONE', 'NONE'])
cfgs.append(['NONE', True, 'AUTO', 'NONE'])
cfgs.append([ 'HES', True, 'SEP', 'BOTH'])
E = len(cfgs)
# experiment name
exp_name = 'debug'
if plot_cmx:
results_file = '{}_cmat_{}'.format(dataset, exp_name)
else:
results_file = '{}_tsne_{}'.format(dataset, exp_name)
fvs_2d_file = '{}/fvs_2d_tsne_{}.npy'.format(results_folder, exp_name)
gts_file = '{}/gts_tsne_{}.npy'.format(results_folder, exp_name)
prs_file = '{}/prs_tsne_{}.npy'.format(results_folder, exp_name)
szs_file = '{}/szs_tsne_{}.npy'.format(results_folder, exp_name)
cmx_file = '{}/cmx_tsne_{}.npy'.format(results_folder, exp_name)
if os.path.isfile(fvs_2d_file):
fvs_2d = np.load(fvs_2d_file)
gts = np.load(gts_file)
prs = np.load(prs_file)
szs = np.load(szs_file)
cmx = np.load(cmx_file)
else:
fvs = np.empty([E,M+N,F])
fvs_2d = np.empty([E,M+N,2])
gts = np.empty([E,M+N], dtype=int)
prs = np.empty([E,M+N])
szs = np.empty([E,M+N])
cmx = np.empty([E,C,C])
for i, cfg in enumerate(cfgs):
hyper_opt, hyper_est, aug_model, los_model = cfg
run_name = '{}_opt_{}_est_{}_aug_model_{}_los_model_{}_{}'.format(
model_name, hyper_opt, hyper_est, aug_model, los_model, model_postfix)
checkpoint_file = '{}/best_{}.pt'.format(model_folder, run_name)
if os.path.isfile(checkpoint_file):
print('Loading pretrained models...', checkpoint_file)
checkpoint = torch.load(checkpoint_file)
encoder.load_state_dict(checkpoint['encoder_state_dict'])
decoder.load_state_dict(checkpoint['decoder_state_dict'])
else:
raise NotImplementedError('{} checkpoint is missing!'.format(checkpoint_file))
# test data
fv, gt, pr, mi = vizStat(args, encoder, decoder, device, valid_loader, M, F)
sz = torch.zeros(M).to(device)
sz[mi] = 1.0
fv, gt, pr, sz = fv.cpu().numpy(), gt.cpu().numpy(), pr.cpu().numpy(), sz.cpu().numpy()
fvs[i,:M] = fv
gts[i,:M] = gt
prs[i,:M] = pr
szs[i,:M] = sz
cm = confusion_matrix(gt, pr)
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
cmx[i] = cm
## train data
#fv, gt, pr, _ = vizStat(args, encoder, decoder, device, train_loader, T, F)
#train_idx = torch.tensor(train_sub_indices, dtype=torch.long, device=device)
##print(train_idx.shape)
#fv, gt, pr, sz = fv[train_idx].cpu().numpy(), gt[train_idx].cpu().numpy(), pr[train_idx].cpu().numpy(), sz.cpu().numpy()
##print(fv.shape, gt.shape, pr.shape)
#fvs[i,M:M+N] = fv
#gts[i,M:M+N] = gt
#prs[i,M:M+N] = pr
#szs[i,M:M+N] = sz
fvs_2d[i] = TSNE(n_components=2, verbose=1).fit_transform(fvs[i])
print('{}-{} : {}/{}/{}/{}'.format(i, run_name, fvs.shape, gts.shape, prs.shape, szs.shape))
# save results
#fvs_2d = TSNE(n_components=2, verbose=1).fit_transform(fvs.reshape((E*(M+N),F))).reshape((E,M+N,2))
np.save(fvs_2d_file, fvs_2d)
np.save(gts_file, gts)
np.save(prs_file, prs)
np.save(szs_file, szs)
np.save(cmx_file, cmx)
#
print('Check output:', fvs_2d.shape)
pdf = PdfPages('{}/{}'.format(results_folder, results_file+'.pdf'))
np.set_printoptions(precision=2)
fontText = 16
S = 9
plt.rcParams.update({'font.size': 16})
plt.rcParams.update({'figure.dpi': 600})
plt.rcParams.update({'savefig.dpi': 600})
fig, ax = plt.subplots(1, E, sharex=True, sharey=True)
fig.set_size_inches(np.array([E*5+1,6]), forward=True)
if plot_cmx:
print('Plotting confusion matrix')
fmt = '.1f'
for e, cfg in enumerate(cfgs):
cm = 100.0*cmx[e]
th = cm.max() / 2.0
ax[e].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
for i in range(C):
for j in range(C):
ax[e].text(j, i, format(cm[i,j], fmt), ha="center", va="center", color="white" if cm[i,j] > th else "black", fontsize = 10)
#ax[e].text(0.25, 10.4, t[e], rotation = 0, fontsize = fontText)
plt.tight_layout()
ax[0].set(xticks=np.arange(C), yticks=np.arange(C), xlabel='Predicted label, (a)', ylabel='True label')
ax[1].set(xticks=np.arange(C), yticks=np.arange(C), xlabel='Predicted label, (b)')
ax[2].set(xticks=np.arange(C), yticks=np.arange(C), xlabel='Predicted label, (c)')
else:
print('Plotting t-sne')
t = ['(a)', '(b)', '(c)']
for e, cfg in enumerate(cfgs):
im = ax[e].scatter(fvs_2d[e,:,0], fvs_2d[e,:,1], cmap=plt.get_cmap('tab10'), c=gts[e], s=S*szs[e]+1)
ax[e].text(-240, -245, t[e], rotation = 0, fontsize = fontText)
plt.tight_layout()
plt.xlim(-255, 255)
plt.ylim(-260, 260)
#fig.colorbar(im, ax=ax.ravel().tolist(), cmap=plt.get_cmap('tab10'), orientation='horizontal', shrink = 0.25, spacing = 'proportional', drawedges = True)
fig.subplots_adjust(right=0.9)
cbar_ax = fig.add_axes([0.91, 0.1, 0.01, 0.84])
fig.colorbar(im, cax=cbar_ax, cmap=plt.get_cmap('tab10'), orientation='vertical')
#5
ellipse = Ellipse(xy=(-60.0, -25.0), width=250.0, height=250.0, angle= 0.0, edgecolor='k', fc='None', lw=2, ls='--')
ax[0].add_patch(ellipse)
ellipse = Ellipse(xy=( 35.0, -15.0), width=210.0, height=210.0, angle= 0.0, edgecolor='k', fc='None', lw=2, ls='--')
ax[1].add_patch(ellipse)
ellipse = Ellipse(xy=(-90.0, -10.0), width=125.0, height=125.0, angle= 0.0, edgecolor='k', fc='None', lw=2, ls='--')
ax[2].add_patch(ellipse)
#
plt.savefig('{}/{}'.format(results_folder, results_file+'.png'), bbox_inches='tight')
#plt.savefig('{}/{}'.format(results_folder, results_file+'.svg'), format="svg", bbox_inches='tight')
pdf.savefig(bbox_inches='tight')
pdf.close()
print('Plot done!')
if __name__ == '__main__':
args = get_args()
main(args)