-
Notifications
You must be signed in to change notification settings - Fork 453
/
Copy pathtrain_molecules_graph_regression.py
executable file
·127 lines (111 loc) · 4.45 KB
/
train_molecules_graph_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Utility functions for training one epoch
and evaluating one epoch
"""
import torch
import torch.nn as nn
import math
from train.metrics import MAE
"""
For GCNs
"""
def train_epoch_sparse(model, optimizer, device, data_loader, epoch):
model.train()
epoch_loss = 0
epoch_train_mae = 0
nb_data = 0
gpu_mem = 0
for iter, (batch_graphs, batch_targets) in enumerate(data_loader):
batch_graphs = batch_graphs.to(device)
batch_x = batch_graphs.ndata['feat'].to(device) # num x feat
batch_e = batch_graphs.edata['feat'].to(device)
batch_targets = batch_targets.to(device)
optimizer.zero_grad()
try:
batch_pos_enc = batch_graphs.ndata['pos_enc'].to(device)
sign_flip = torch.rand(batch_pos_enc.size(1)).to(device)
sign_flip[sign_flip>=0.5] = 1.0; sign_flip[sign_flip<0.5] = -1.0
batch_pos_enc = batch_pos_enc * sign_flip.unsqueeze(0)
batch_scores = model.forward(batch_graphs, batch_x, batch_e, batch_pos_enc)
except:
batch_scores = model.forward(batch_graphs, batch_x, batch_e)
loss = model.loss(batch_scores, batch_targets)
loss.backward()
optimizer.step()
epoch_loss += loss.detach().item()
epoch_train_mae += MAE(batch_scores, batch_targets)
nb_data += batch_targets.size(0)
epoch_loss /= (iter + 1)
epoch_train_mae /= (iter + 1)
return epoch_loss, epoch_train_mae, optimizer
def evaluate_network_sparse(model, device, data_loader, epoch):
model.eval()
epoch_test_loss = 0
epoch_test_mae = 0
nb_data = 0
with torch.no_grad():
for iter, (batch_graphs, batch_targets) in enumerate(data_loader):
batch_graphs = batch_graphs.to(device)
batch_x = batch_graphs.ndata['feat'].to(device)
batch_e = batch_graphs.edata['feat'].to(device)
batch_targets = batch_targets.to(device)
try:
batch_pos_enc = batch_graphs.ndata['pos_enc'].to(device)
batch_scores = model.forward(batch_graphs, batch_x, batch_e, batch_pos_enc)
except:
batch_scores = model.forward(batch_graphs, batch_x, batch_e)
loss = model.loss(batch_scores, batch_targets)
epoch_test_loss += loss.detach().item()
epoch_test_mae += MAE(batch_scores, batch_targets)
nb_data += batch_targets.size(0)
epoch_test_loss /= (iter + 1)
epoch_test_mae /= (iter + 1)
return epoch_test_loss, epoch_test_mae
"""
For WL-GNNs
"""
def train_epoch_dense(model, optimizer, device, data_loader, epoch, batch_size):
model.train()
epoch_loss = 0
epoch_train_mae = 0
nb_data = 0
gpu_mem = 0
optimizer.zero_grad()
for iter, (x_no_edge_feat, x_with_edge_feat, targets) in enumerate(data_loader):
if x_no_edge_feat is not None:
x_no_edge_feat = x_no_edge_feat.to(device)
if x_with_edge_feat is not None:
x_with_edge_feat = x_with_edge_feat.to(device)
targets = targets.to(device)
scores = model.forward(x_no_edge_feat, x_with_edge_feat)
loss = model.loss(scores, targets)
loss.backward()
if not (iter%batch_size):
optimizer.step()
optimizer.zero_grad()
epoch_loss += loss.detach().item()
epoch_train_mae += MAE(scores, targets)
nb_data += targets.size(0)
epoch_loss /= (iter + 1)
epoch_train_mae /= (iter + 1)
return epoch_loss, epoch_train_mae, optimizer
def evaluate_network_dense(model, device, data_loader, epoch):
model.eval()
epoch_test_loss = 0
epoch_test_mae = 0
nb_data = 0
with torch.no_grad():
for iter, (x_no_edge_feat, x_with_edge_feat, targets) in enumerate(data_loader):
if x_no_edge_feat is not None:
x_no_edge_feat = x_no_edge_feat.to(device)
if x_with_edge_feat is not None:
x_with_edge_feat = x_with_edge_feat.to(device)
targets = targets.to(device)
scores = model.forward(x_no_edge_feat, x_with_edge_feat)
loss = model.loss(scores, targets)
epoch_test_loss += loss.detach().item()
epoch_test_mae += MAE(scores, targets)
nb_data += targets.size(0)
epoch_test_loss /= (iter + 1)
epoch_test_mae /= (iter + 1)
return epoch_test_loss, epoch_test_mae