-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fully.py
116 lines (96 loc) · 4.34 KB
/
train_fully.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import torch
import torch.nn as nn
import argparse
import timm
import utils
import dino_variant
def train():
parser = argparse.ArgumentParser()
parser.add_argument('--data', '-d', type=str)
parser.add_argument('--gpu', '-g', default = '0', type=str)
parser.add_argument('--netsize', default='s', type=str)
parser.add_argument('--save_path', '-s', type=str)
parser.add_argument('--noise_rate', '-n', type=float, default=0.2)
args = parser.parse_args()
config = utils.read_conf('conf/'+args.data+'.json')
device = 'cuda:'+args.gpu
save_path = os.path.join(config['save_path'], args.save_path)
data_path = config['id_dataset']
batch_size = int(config['batch_size'])
max_epoch = int(config['epoch'])
noise_rate = args.noise_rate
if not os.path.exists(save_path):
os.mkdir(save_path)
lr_decay = [int(0.5*max_epoch), int(0.75*max_epoch), int(0.9*max_epoch)]
if args.data == 'ham10000':
train_loader, valid_loader = utils.get_noise_dataset(data_path, noise_rate=noise_rate, batch_size = batch_size)
elif args.data == 'aptos':
train_loader, valid_loader = utils.get_aptos_noise_dataset(data_path, noise_rate=noise_rate, batch_size = batch_size)
elif 'mnist' in args.data:
train_loader, valid_loader = utils.get_mnist_noise_dataset(args.data, noise_rate=noise_rate, batch_size = batch_size)
elif 'cifar' in args.data:
train_loader, valid_loader = utils.get_cifar_noise_dataset(args.data, data_path, batch_size = batch_size, noise_rate=noise_rate)
if args.netsize == 's':
model_load = dino_variant._small_dino
variant = dino_variant._small_variant
elif args.netsize == 'b':
model_load = dino_variant._base_dino
variant = dino_variant._base_variant
elif args.netsize == 'l':
model_load = dino_variant._large_dino
variant = dino_variant._large_variant
model = torch.hub.load('facebookresearch/dinov2', model_load)
model.linear = nn.Linear(variant['embed_dim'], config['num_classes'])
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
model.eval()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay = 1e-5)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, lr_decay)
saver = timm.utils.CheckpointSaver(model, optimizer, checkpoint_dir= save_path, max_history = 1)
print(train_loader.dataset[0][0].shape)
print('## Trainable parameters')
model.train()
for n, p in model.named_parameters():
if p.requires_grad == True:
print(n)
avg_accuracy = 0.0
for epoch in range(max_epoch):
## training
model.train()
total_loss = 0
total = 0
correct = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
outputs = model.linear(outputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
total_loss += loss
total += targets.size(0)
_, predicted = outputs[:len(targets)].max(1)
correct += predicted.eq(targets).sum().item()
print('\r', batch_idx, len(train_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (total_loss/(batch_idx+1), 100.*correct/total, correct, total), end = '')
train_accuracy = correct/total
train_avg_loss = total_loss/len(train_loader)
print()
## validation
model.eval()
total_loss = 0
total = 0
correct = 0
valid_accuracy = utils.validation_accuracy(model, valid_loader, device, mode='linear')
scheduler.step()
if epoch >= max_epoch-10:
avg_accuracy += valid_accuracy
saver.save_checkpoint(epoch, metric = valid_accuracy)
print('EPOCH {:4}, TRAIN [loss - {:.4f}, acc - {:.4f}], VALID [acc - {:.4f}]\n'.format(epoch, train_avg_loss, train_accuracy, valid_accuracy))
print(scheduler.get_last_lr())
with open(os.path.join(save_path, 'avgacc.txt'), 'w') as f:
f.write(str(avg_accuracy/10))
if __name__ =='__main__':
train()