From 4e7e84ecf7e935c7058ff17a114297d816e82d8b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 20 Dec 2024 13:09:21 +0200 Subject: [PATCH] examples : remove talk and talk.wasm --- examples/CMakeLists.txt | 4 - examples/talk.wasm/CMakeLists.txt | 51 -- examples/talk.wasm/README.md | 74 --- examples/talk.wasm/emscripten.cpp | 368 ------------- examples/talk.wasm/gpt-2.cpp | 808 --------------------------- examples/talk.wasm/gpt-2.h | 21 - examples/talk.wasm/index-tmpl.html | 856 ----------------------------- examples/talk/.gitignore | 2 - examples/talk/CMakeLists.txt | 8 - examples/talk/README.md | 45 -- examples/talk/eleven-labs.py | 80 --- examples/talk/gpt-2.cpp | 809 --------------------------- examples/talk/gpt-2.h | 21 - examples/talk/speak | 40 -- examples/talk/speak.bat | 1 - examples/talk/speak.ps1 | 14 - examples/talk/talk.cpp | 376 ------------- examples/talk/to_speak.txt | 1 + 18 files changed, 1 insertion(+), 3578 deletions(-) delete mode 100644 examples/talk.wasm/CMakeLists.txt delete mode 100644 examples/talk.wasm/README.md delete mode 100644 examples/talk.wasm/emscripten.cpp delete mode 100644 examples/talk.wasm/gpt-2.cpp delete mode 100644 examples/talk.wasm/gpt-2.h delete mode 100644 examples/talk.wasm/index-tmpl.html delete mode 100644 examples/talk/.gitignore delete mode 100644 examples/talk/CMakeLists.txt delete mode 100644 examples/talk/README.md delete mode 100644 examples/talk/eleven-labs.py delete mode 100644 examples/talk/gpt-2.cpp delete mode 100644 examples/talk/gpt-2.h delete mode 100644 examples/talk/speak delete mode 100644 examples/talk/speak.bat delete mode 100644 examples/talk/speak.ps1 delete mode 100644 examples/talk/talk.cpp create mode 100644 examples/talk/to_speak.txt diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 736b542971c..3e03c95ec2d 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -99,7 +99,6 @@ if (EMSCRIPTEN) add_subdirectory(whisper.wasm) add_subdirectory(stream.wasm) add_subdirectory(command.wasm) - #add_subdirectory(talk.wasm) add_subdirectory(bench.wasm) elseif(CMAKE_JS_VERSION) add_subdirectory(addon.node) @@ -115,9 +114,6 @@ endif (WHISPER_SDL2) add_subdirectory(bench) add_subdirectory(quantize) if (WHISPER_SDL2) - # TODO: disabled until update - # https://github.com/ggerganov/whisper.cpp/issues/1818 - #add_subdirectory(talk) add_subdirectory(talk-llama) add_subdirectory(lsp) if (GGML_SYCL) diff --git a/examples/talk.wasm/CMakeLists.txt b/examples/talk.wasm/CMakeLists.txt deleted file mode 100644 index 8f00eb488ba..00000000000 --- a/examples/talk.wasm/CMakeLists.txt +++ /dev/null @@ -1,51 +0,0 @@ -# -# libtalk -# - -set(TARGET libtalk) - -add_executable(${TARGET} - emscripten.cpp - gpt-2.cpp - ) - -include(DefaultTargetOptions) - -target_link_libraries(${TARGET} PRIVATE - whisper - common - ) - -unset(EXTRA_FLAGS) - -if (WHISPER_WASM_SINGLE_FILE) - set(EXTRA_FLAGS "-s SINGLE_FILE=1") - message(STATUS "Embedding WASM inside talk.js") - - add_custom_command( - TARGET ${TARGET} POST_BUILD - COMMAND ${CMAKE_COMMAND} -E copy - ${CMAKE_BINARY_DIR}/bin/libtalk.js - ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/talk.wasm/talk.js - ) -endif() - -set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \ - --bind \ - -s USE_PTHREADS=1 \ - -s PTHREAD_POOL_SIZE=8 \ - -s INITIAL_MEMORY=1800MB \ - -s TOTAL_MEMORY=1800MB \ - -s FORCE_FILESYSTEM=1 \ - -s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \ - ${EXTRA_FLAGS} \ - ") - -# -# talk.wasm -# - -set(TARGET talk.wasm) - -configure_file(${CMAKE_CURRENT_SOURCE_DIR}/index-tmpl.html ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/index.html @ONLY) -configure_file(${CMAKE_CURRENT_SOURCE_DIR}/../helpers.js ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/helpers.js @ONLY) diff --git a/examples/talk.wasm/README.md b/examples/talk.wasm/README.md deleted file mode 100644 index e656fee71cc..00000000000 --- a/examples/talk.wasm/README.md +++ /dev/null @@ -1,74 +0,0 @@ -# talk.wasm - -Talk with an Artificial Intelligence in your browser: - -[https://user-images.githubusercontent.com/1991296/203411580-fedb4839-05e4-4474-8364-aaf1e9a9b615.mp4](https://user-images.githubusercontent.com/1991296/203845553-f7b44e13-9a15-4fc8-b518-ae8f4c6770fe.mp4) - -Online demo: https://whisper.ggerganov.com/talk/ - -Terminal version: [examples/talk](/examples/talk) - -## How it works? - -This demo leverages 2 modern neural network models to create a high-quality voice chat directly in your browser: - -- [OpenAI's Whisper](https://github.com/openai/whisper) speech recognition model is used to process your voice and understand what you are saying -- Upon receiving some voice input, the AI generates a text response using [OpenAI's GPT-2](https://github.com/openai/gpt-2) language model -- The AI then vocalizes the response using the browser's [Web Speech API](https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API) - -The web page does the processing locally on your machine. The processing of these heavy neural network models in the -browser is possible by implementing them efficiently in C/C++ and using the browser's WebAssembly SIMD capabilities for -extra performance: - -- The Whisper C++ implementation is here: [whisper.h](/whisper.h) / [whisper.cpp](/whisper.cpp) -- The GPT-2 C++ implementation is here: [gpt-2.h](gpt-2.h) / [gpt-2.cpp](gpt-2.cpp) -- Both models use a custom tensor library implemented in C: [ggml.h](/ggml.h) / [ggml.c](/ggml.c) -- The HTML/JS layer is here: [index-tmpl.html](index-tmpl.html) -- The Emscripten bridge between C/C++ and JS is here: [emscripten.cpp](emscripten.cpp) - -In order to run the models, the web page first needs to download the model data which is about ~350 MB. The model data -is then cached in your browser's cache and can be reused in future visits without downloading it again. - -## Requirements - -In order to run this demo efficiently, you need to have the following: - -- Latest Chrome or Firefox browser (Safari is not supported) -- Run this on a desktop or laptop with modern CPU (a mobile phone will likely not be good enough) -- Speak phrases that are no longer than 10 seconds - this is the audio context of the AI -- The web-page uses about 1.8GB of RAM - -Notice that this demo is using the smallest GPT-2 model, so the generated text responses are not always very good. -Also, the prompting strategy can likely be improved to achieve better results. - -The demo is quite computationally heavy, so you need a fast CPU. It's not usual to run these transformer models in a -browser. Typically, they run on powerful GPUs. - -Currently, mobile browsers do not support the Fixed-width SIMD WebAssembly capability, so you cannot run this demo -on a phone or a tablet. Hopefully, in the near future this will become supported. - -## Todo - -- Better UI (contributions are welcome) -- Better GPT-2 prompting - -## Build instructions - -```bash -# build using Emscripten (v3.1.2) -git clone https://github.com/ggerganov/whisper.cpp -cd whisper.cpp -mkdir build-em && cd build-em -emcmake cmake .. -make -j - -# copy the produced page to your HTTP path -cp bin/talk.wasm/* /path/to/html/ -cp bin/libtalk.worker.js /path/to/html/ -``` - -## Feedback - -If you have any comments or ideas for improvement, please drop a comment in the following discussion: - -https://github.com/ggerganov/whisper.cpp/discussions/167 diff --git a/examples/talk.wasm/emscripten.cpp b/examples/talk.wasm/emscripten.cpp deleted file mode 100644 index 53cb951e027..00000000000 --- a/examples/talk.wasm/emscripten.cpp +++ /dev/null @@ -1,368 +0,0 @@ -#include "ggml.h" -#include "gpt-2.h" -#include "whisper.h" - -#include -#include - -#include -#include -#include -#include -#include -#include -#include - -constexpr int N_THREAD = 8; - -struct gpt2_context * g_gpt2; -std::vector g_contexts(4, nullptr); - -std::mutex g_mutex; -std::thread g_worker; -std::atomic g_running(false); - -bool g_force_speak = false; -std::string g_text_to_speak = ""; -std::string g_status = ""; -std::string g_status_forced = ""; - -std::vector g_pcmf32; - -void talk_set_status(const std::string & status) { - std::lock_guard lock(g_mutex); - g_status = status; -} - -void talk_main(size_t index) { - talk_set_status("loading data ..."); - - struct whisper_full_params wparams = whisper_full_default_params(whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY); - - wparams.n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency()); - wparams.offset_ms = 0; - wparams.translate = false; - wparams.no_context = true; - wparams.single_segment = true; - wparams.print_realtime = false; - wparams.print_progress = false; - wparams.print_timestamps = true; - wparams.print_special = false; - - wparams.max_tokens = 32; - wparams.audio_ctx = 768; // partial encoder context for better performance - - wparams.language = "en"; - - g_gpt2 = gpt2_init("gpt-2.bin"); - - printf("talk: using %d threads\n", wparams.n_threads); - - std::vector pcmf32; - - // whisper context - auto & ctx = g_contexts[index]; - - const int64_t step_samples = 2*WHISPER_SAMPLE_RATE; - const int64_t window_samples = 9*WHISPER_SAMPLE_RATE; - const int64_t step_ms = (step_samples*1000)/WHISPER_SAMPLE_RATE; - - auto t_last = std::chrono::high_resolution_clock::now(); - - talk_set_status("listening ..."); - - while (g_running) { - - const auto t_now = std::chrono::high_resolution_clock::now(); - if (std::chrono::duration_cast(t_now - t_last).count() < step_ms) { - { - std::lock_guard lock(g_mutex); - g_pcmf32.clear(); - } - std::this_thread::sleep_for(std::chrono::milliseconds(10)); - continue; - } - - talk_set_status("listening ..."); - - { - std::unique_lock lock(g_mutex); - - if (g_pcmf32.size() < step_samples) { - lock.unlock(); - - std::this_thread::sleep_for(std::chrono::milliseconds(10)); - - continue; - } - - pcmf32 = std::vector(g_pcmf32.end() - std::min((int64_t) g_pcmf32.size(), window_samples), g_pcmf32.end()); - } - - // VAD: if energy in during last second is above threshold, then skip - { - float energy_all = 0.0f; - float energy_1s = 0.0f; - - for (size_t i = 0; i < pcmf32.size(); i++) { - energy_all += fabsf(pcmf32[i]); - - if (i >= pcmf32.size() - WHISPER_SAMPLE_RATE) { - energy_1s += fabsf(pcmf32[i]); - } - } - - energy_all /= pcmf32.size(); - energy_1s /= WHISPER_SAMPLE_RATE; - - if (energy_1s > 0.1f*energy_all && !g_force_speak) { - std::this_thread::sleep_for(std::chrono::milliseconds(10)); - continue; - } - } - - talk_set_status("processing audio (whisper)..."); - - t_last = t_now; - - if (!g_force_speak) { - const auto t_start = std::chrono::high_resolution_clock::now(); - - int ret = whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()); - if (ret != 0) { - printf("whisper_full() failed: %d\n", ret); - break; - } - - const auto t_end = std::chrono::high_resolution_clock::now(); - - printf("whisper_full() returned %d in %f seconds\n", ret, std::chrono::duration(t_end - t_start).count()); - } - - { - std::string text_heard; - - if (!g_force_speak) { - const int n_segments = whisper_full_n_segments(ctx); - for (int i = n_segments - 1; i < n_segments; ++i) { - const char * text = whisper_full_get_segment_text(ctx, i); - - const int64_t t0 = whisper_full_get_segment_t0(ctx, i); - const int64_t t1 = whisper_full_get_segment_t1(ctx, i); - - printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text); - - text_heard += text; - } - } - - g_force_speak = false; - - // remove text between brackets using regex - { - std::regex re("\\[.*?\\]"); - text_heard = std::regex_replace(text_heard, re, ""); - } - - // remove text between brackets using regex - { - std::regex re("\\(.*?\\)"); - text_heard = std::regex_replace(text_heard, re, ""); - } - - // remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' ' - text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); - - // take first line - text_heard = text_heard.substr(0, text_heard.find_first_of("\n")); - - // remove leading and trailing whitespace - text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), ""); - text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), ""); - - talk_set_status("'" + text_heard + "' - thinking how to respond (gpt-2) ..."); - - const std::vector tokens = gpt2_tokenize(g_gpt2, text_heard.c_str()); - - printf("whisper: number of tokens: %d, '%s'\n", (int) tokens.size(), text_heard.c_str()); - - std::string text_to_speak; - std::string prompt_base; - - { - std::lock_guard lock(g_mutex); - prompt_base = gpt2_get_prompt(g_gpt2); - } - - if (tokens.size() > 0) { - text_to_speak = gpt2_gen_text(g_gpt2, (prompt_base + text_heard + "\n").c_str(), 32); - text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); - text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n")); - - std::lock_guard lock(g_mutex); - - // remove first 2 lines of base prompt - { - const size_t pos = prompt_base.find_first_of("\n"); - if (pos != std::string::npos) { - prompt_base = prompt_base.substr(pos + 1); - } - } - { - const size_t pos = prompt_base.find_first_of("\n"); - if (pos != std::string::npos) { - prompt_base = prompt_base.substr(pos + 1); - } - } - prompt_base += text_heard + "\n" + text_to_speak + "\n"; - } else { - text_to_speak = gpt2_gen_text(g_gpt2, prompt_base.c_str(), 32); - text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); - text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n")); - - std::lock_guard lock(g_mutex); - - const size_t pos = prompt_base.find_first_of("\n"); - if (pos != std::string::npos) { - prompt_base = prompt_base.substr(pos + 1); - } - prompt_base += text_to_speak + "\n"; - } - - printf("gpt-2: %s\n", text_to_speak.c_str()); - - //printf("========================\n"); - //printf("gpt-2: prompt_base:\n'%s'\n", prompt_base.c_str()); - //printf("========================\n"); - - { - std::lock_guard lock(g_mutex); - t_last = std::chrono::high_resolution_clock::now(); - g_text_to_speak = text_to_speak; - g_pcmf32.clear(); - gpt2_set_prompt(g_gpt2, prompt_base.c_str()); - } - - talk_set_status("speaking ..."); - } - } - - gpt2_free(g_gpt2); - - if (index < g_contexts.size()) { - whisper_free(g_contexts[index]); - g_contexts[index] = nullptr; - } -} - -EMSCRIPTEN_BINDINGS(talk) { - emscripten::function("init", emscripten::optional_override([](const std::string & path_model) { - for (size_t i = 0; i < g_contexts.size(); ++i) { - if (g_contexts[i] == nullptr) { - g_contexts[i] = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params()); - if (g_contexts[i] != nullptr) { - g_running = true; - if (g_worker.joinable()) { - g_worker.join(); - } - g_worker = std::thread([i]() { - talk_main(i); - }); - - return i + 1; - } else { - return (size_t) 0; - } - } - } - - return (size_t) 0; - })); - - emscripten::function("free", emscripten::optional_override([](size_t index) { - if (g_running) { - g_running = false; - } - })); - - emscripten::function("set_audio", emscripten::optional_override([](size_t index, const emscripten::val & audio) { - --index; - - if (index >= g_contexts.size()) { - return -1; - } - - if (g_contexts[index] == nullptr) { - return -2; - } - - { - std::lock_guard lock(g_mutex); - const int n = audio["length"].as(); - - emscripten::val heap = emscripten::val::module_property("HEAPU8"); - emscripten::val memory = heap["buffer"]; - - g_pcmf32.resize(n); - - emscripten::val memoryView = audio["constructor"].new_(memory, reinterpret_cast(g_pcmf32.data()), n); - memoryView.call("set", audio); - } - - return 0; - })); - - emscripten::function("force_speak", emscripten::optional_override([](size_t index) { - { - std::lock_guard lock(g_mutex); - g_force_speak = true; - } - })); - - emscripten::function("get_text_context", emscripten::optional_override([]() { - std::string text_context; - - { - std::lock_guard lock(g_mutex); - text_context = gpt2_get_prompt(g_gpt2); - } - - return text_context; - })); - - emscripten::function("get_text_to_speak", emscripten::optional_override([]() { - std::string text_to_speak; - - { - std::lock_guard lock(g_mutex); - text_to_speak = std::move(g_text_to_speak); - } - - return text_to_speak; - })); - - emscripten::function("get_status", emscripten::optional_override([]() { - std::string status; - - { - std::lock_guard lock(g_mutex); - status = g_status_forced.empty() ? g_status : g_status_forced; - } - - return status; - })); - - emscripten::function("set_status", emscripten::optional_override([](const std::string & status) { - { - std::lock_guard lock(g_mutex); - g_status_forced = status; - } - })); - - emscripten::function("set_prompt", emscripten::optional_override([](const std::string & prompt) { - { - std::lock_guard lock(g_mutex); - gpt2_set_prompt(g_gpt2, prompt.c_str()); - } - })); -} diff --git a/examples/talk.wasm/gpt-2.cpp b/examples/talk.wasm/gpt-2.cpp deleted file mode 100644 index 22ec3354719..00000000000 --- a/examples/talk.wasm/gpt-2.cpp +++ /dev/null @@ -1,808 +0,0 @@ -#include "ggml.h" -#include "common-ggml.h" - -#include "gpt-2.h" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/////////////////////// GPT-2 BEGIN ///////////////////////// - -// default hparams (GPT-2 117M) -struct gpt2_hparams { - int32_t n_vocab = 50257; - int32_t n_ctx = 1024; - int32_t n_embd = 768; - int32_t n_head = 12; - int32_t n_layer = 12; - int32_t ftype = 1; -}; - -struct gpt2_layer { - // normalization - struct ggml_tensor * ln_1_g; - struct ggml_tensor * ln_1_b; - - struct ggml_tensor * ln_2_g; - struct ggml_tensor * ln_2_b; - - // attention - struct ggml_tensor * c_attn_attn_w; - struct ggml_tensor * c_attn_attn_b; - - struct ggml_tensor * c_attn_proj_w; - struct ggml_tensor * c_attn_proj_b; - - // mlp - struct ggml_tensor * c_mlp_fc_w; - struct ggml_tensor * c_mlp_fc_b; - - struct ggml_tensor * c_mlp_proj_w; - struct ggml_tensor * c_mlp_proj_b; -}; - -struct gpt2_model { - gpt2_hparams hparams; - - // normalization - struct ggml_tensor * ln_f_g; - struct ggml_tensor * ln_f_b; - - struct ggml_tensor * wte; // position embedding - struct ggml_tensor * wpe; // token embedding - struct ggml_tensor * lm_head; // language model head - - std::vector layers; - - // key + value memory - struct ggml_tensor * memory_k; - struct ggml_tensor * memory_v; - - // - struct ggml_context * ctx; - std::map tensors; -}; - -// load the model's weights from a file -bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) { - printf("%s: loading model from '%s'\n", __func__, fname.c_str()); - - auto fin = std::ifstream(fname, std::ios::binary); - if (!fin) { - fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); - return false; - } - - // verify magic - { - uint32_t magic; - fin.read((char *) &magic, sizeof(magic)); - if (magic != 0x67676d6c) { - fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); - return false; - } - } - - // load hparams - { - auto & hparams = model.hparams; - - fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); - fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); - fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); - fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); - fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); - fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); - - printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); - printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); - printf("%s: n_embd = %d\n", __func__, hparams.n_embd); - printf("%s: n_head = %d\n", __func__, hparams.n_head); - printf("%s: n_layer = %d\n", __func__, hparams.n_layer); - printf("%s: ftype = %d\n", __func__, hparams.ftype); - } - - // load vocab - { - int32_t n_vocab = 0; - fin.read((char *) &n_vocab, sizeof(n_vocab)); - - if (n_vocab != model.hparams.n_vocab) { - fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", - __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); - return false; - } - - std::string word; - for (int i = 0; i < n_vocab; i++) { - uint32_t len; - fin.read((char *) &len, sizeof(len)); - - word.resize(len); - fin.read((char *) word.data(), len); - - vocab.token_to_id[word] = i; - vocab.id_to_token[i] = word; - } - } - - // for the big tensors, we have the option to store the data in 16-bit floats or quantized - // in order to save memory and also to speed up the computation - ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); - if (wtype == GGML_TYPE_COUNT) { - fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", - __func__, fname.c_str(), model.hparams.ftype); - return false; - } - - auto & ctx = model.ctx; - - size_t ctx_size = 0; - - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - - ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd); // ln_f_g - ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd); // ln_f_b - - ctx_size += n_vocab*ggml_row_size(wtype, n_embd); // wte - ctx_size += n_ctx*ggml_row_size(GGML_TYPE_F32, n_embd); // wpe - ctx_size += n_vocab*ggml_row_size(wtype, n_embd); // lm_head - - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_1_g - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_1_b - - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_2_g - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_2_b - - ctx_size += n_layer*(ggml_row_size(wtype, 3*n_embd*n_embd)); // c_attn_attn_w - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 3*n_embd)); // c_attn_attn_b - - ctx_size += n_layer*(ggml_row_size(wtype, n_embd*n_embd)); // c_attn_proj_w - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // c_attn_proj_b - - ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd)); // c_mlp_fc_w - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 4*n_embd)); // c_mlp_fc_b - - ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd)); // c_mlp_proj_w - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // c_mlp_proj_b - - ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd); // memory_k - ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd); // memory_v - - ctx_size += (6 + 12*n_layer)*256; // object overhead - - printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); - } - - // create the ggml context - { - struct ggml_init_params params = { - /*.mem_size =*/ ctx_size, - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ false, - }; - - model.ctx = ggml_init(params); - if (!model.ctx) { - fprintf(stderr, "%s: ggml_init() failed\n", __func__); - return false; - } - } - - // prepare memory for the weights - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - - model.layers.resize(n_layer); - - model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); - model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx); - model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); - - // map by name - model.tensors["model/ln_f/g"] = model.ln_f_g; - model.tensors["model/ln_f/b"] = model.ln_f_b; - - model.tensors["model/wte"] = model.wte; - model.tensors["model/wpe"] = model.wpe; - model.tensors["model/lm_head"] = model.lm_head; - - for (int i = 0; i < n_layer; ++i) { - auto & layer = model.layers[i]; - - layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd); - layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd); - - layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); - layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); - layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); - - layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); - layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - // map by name - model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g; - model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b; - - model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g; - model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b; - - model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w; - model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b; - - model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w; - model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b; - - model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w; - model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b; - - model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w; - model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b; - } - } - - // key + value memory - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - - const int n_mem = n_layer*n_ctx; - const int n_elements = n_embd*n_mem; - - model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); - model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); - - const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); - - printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); - } - - // load weights - { - size_t total_size = 0; - - bool has_lm_head = false; - - while (true) { - int32_t n_dims; - int32_t length; - int32_t ttype; - - fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); - fin.read(reinterpret_cast(&length), sizeof(length)); - fin.read(reinterpret_cast(&ttype), sizeof(ttype)); - - if (fin.eof()) { - break; - } - - int32_t nelements = 1; - int32_t ne[2] = { 1, 1 }; - for (int i = 0; i < n_dims; ++i) { - fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); - nelements *= ne[i]; - } - - std::string name(length, 0); - fin.read(&name[0], length); - - if (model.tensors.find(name.data()) == model.tensors.end()) { - fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); - return false; - } - - auto tensor = model.tensors[name.data()]; - if (ggml_nelements(tensor) != nelements) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); - return false; - } - - if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { - fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", - __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]); - return false; - } - - // for debugging - if (0) { - printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); - } - - const size_t bpe = ggml_type_size(ggml_type(ttype)); - - if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", - __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); - return false; - } - - fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); - - // GPT-2 models share the WTE tensor as the LM head - if (name == "model/wte" && has_lm_head == false) { - memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor)); - } - - if (name == "model/lm_head") { - has_lm_head = true; - } - - total_size += ggml_nbytes(tensor); - } - - printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); - } - - fin.close(); - - return true; -} - -// evaluate the transformer -// -// - model: the model -// - n_threads: number of threads to use -// - n_past: the context size so far -// - embd_inp: the embeddings of the tokens in the context -// - embd_w: the predicted logits for the next token -// -bool gpt2_eval( - const gpt2_model & model, - const int n_threads, - const int n_past, - const std::vector & embd_inp, - std::vector & embd_w, - size_t & mem_per_token) { - const int N = embd_inp.size(); - - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_head = hparams.n_head; - const int n_vocab = hparams.n_vocab; - - static size_t buf_size = 512u*1024*1024; - static void * buf = malloc(buf_size); - - if (mem_per_token > 0 && mem_per_token*N > buf_size) { - const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead - //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); - - // reallocate - buf_size = buf_size_new; - buf = realloc(buf, buf_size); - if (buf == nullptr) { - fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); - return false; - } - } - - struct ggml_init_params params = { - /*.mem_size =*/ buf_size, - /*.mem_buffer =*/ buf, - /*.no_alloc =*/ false, - }; - - struct ggml_context * ctx0 = ggml_init(params); - struct ggml_cgraph gf = {}; - - struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); - - struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - for (int i = 0; i < N; ++i) { - ((int32_t *) position->data)[i] = n_past + i; - } - - // wte + wpe - struct ggml_tensor * inpL = - ggml_add(ctx0, - ggml_get_rows(ctx0, model.wte, embd), - ggml_get_rows(ctx0, model.wpe, position)); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * cur; - - // norm - { - // [ 768, N] - cur = ggml_norm(ctx0, inpL, 1e-5f); - - // cur = ln_1_g*cur + ln_1_b - // [ 768, N] - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), - cur), - ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); - } - - // attn - // [2304, 768] - model.layers[il].c_attn_attn_w - // [2304, 1] - model.layers[il].c_attn_attn_b - // [ 768, N] - cur (in) - // [2304, N] - cur (out) - // - // cur = attn_w*cur + attn_b - // [2304, N] - { - cur = ggml_mul_mat(ctx0, - model.layers[il].c_attn_attn_w, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), - cur); - } - - // self-attention - { - struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd); - struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd); - struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd); - - // store key and value to memory - if (N >= 1) { - struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past)); - - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); - } - - // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) - // [64, N, 12] - struct ggml_tensor * Q = - ggml_permute(ctx0, - ggml_cpy(ctx0, - Qcur, - ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), - 0, 2, 1, 3); - - // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) - // [64, n_past + N, 12] - struct ggml_tensor * K = - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), - n_embd/n_head, n_head, n_past + N), - 0, 2, 1, 3); - - // GG: flash attention - //struct ggml_tensor * V = - // ggml_cpy(ctx0, - // ggml_permute(ctx0, - // ggml_reshape_3d(ctx0, - // ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), - // n_embd/n_head, n_head, n_past + N), - // 1, 2, 0, 3), - // ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head)); - - //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true); - - // K * Q - // [n_past + N, N, 12] - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - - // KQ_scaled = KQ / sqrt(n_embd/n_head) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_scaled = - ggml_scale(ctx0, - KQ, - 1.0f/sqrt(float(n_embd)/n_head)); - - // KQ_masked = mask_past(KQ_scaled) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); - - // KQ = soft_max(KQ_masked) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); - - // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() - // [n_past + N, 64, 12] - struct ggml_tensor * V_trans = - ggml_cpy(ctx0, - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), - n_embd/n_head, n_head, n_past + N), - 1, 2, 0, 3), - ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head)); - - // KQV = transpose(V) * KQ_soft_max - // [64, N, 12] - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); - - // KQV_merged = KQV.permute(0, 2, 1, 3) - // [64, 12, N] - struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - - // cur = KQV_merged.contiguous().view(n_embd, N) - // [768, N] - cur = ggml_cpy(ctx0, - KQV_merged, - ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); - } - - // projection - // [ 768, 768] - model.layers[il].c_attn_proj_w - // [ 768, 1] - model.layers[il].c_attn_proj_b - // [ 768, N] - cur (in) - // [ 768, N] - cur (out) - // - // cur = proj_w*cur + proj_b - // [768, N] - { - cur = ggml_mul_mat(ctx0, - model.layers[il].c_attn_proj_w, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), - cur); - } - - // add the input - cur = ggml_add(ctx0, cur, inpL); - - struct ggml_tensor * inpFF = cur; - - // feed-forward network - { - // norm - { - cur = ggml_norm(ctx0, inpFF, 1e-5f); - - // cur = ln_2_g*cur + ln_2_b - // [ 768, N] - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.layers[il].ln_2_g, cur), - cur), - ggml_repeat(ctx0, model.layers[il].ln_2_b, cur)); - } - - // fully connected - // [3072, 768] - model.layers[il].c_mlp_fc_w - // [3072, 1] - model.layers[il].c_mlp_fc_b - // [ 768, N] - cur (in) - // [3072, N] - cur (out) - // - // cur = fc_w*cur + fc_b - // [3072, N] - cur = ggml_mul_mat(ctx0, - model.layers[il].c_mlp_fc_w, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), - cur); - - // GELU activation - // [3072, N] - cur = ggml_gelu(ctx0, cur); - - // projection - // [ 768, 3072] - model.layers[il].c_mlp_proj_w - // [ 768, 1] - model.layers[il].c_mlp_proj_b - // [3072, N] - cur (in) - // [ 768, N] - cur (out) - // - // cur = proj_w*cur + proj_b - // [768, N] - cur = ggml_mul_mat(ctx0, - model.layers[il].c_mlp_proj_w, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), - cur); - } - - // input for next layer - inpL = ggml_add(ctx0, cur, inpFF); - } - - // norm - { - // [ 768, N] - inpL = ggml_norm(ctx0, inpL, 1e-5f); - - // inpL = ln_f_g*inpL + ln_f_b - // [ 768, N] - inpL = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.ln_f_g, inpL), - inpL), - ggml_repeat(ctx0, model.ln_f_b, inpL)); - } - - // inpL = WTE * inpL - // [ 768, 50257] - model.lm_head - // [ 768, N] - inpL - inpL = ggml_mul_mat(ctx0, model.lm_head, inpL); - - // logits -> probs - //inpL = ggml_soft_max(ctx0, inpL); - - // run the computation - ggml_build_forward_expand (&gf, inpL); - ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); - - //if (n_past%100 == 0) { - // ggml_graph_print (&gf); - // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); - //} - - //embd_w.resize(n_vocab*N); - //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); - - // return result just for the last token - embd_w.resize(n_vocab); - memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); - - if (mem_per_token == 0) { - mem_per_token = ggml_used_mem(ctx0)/N; - } - //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); - - ggml_free(ctx0); - - return true; -} - -/////////////////////////////// GPT-2 END //////////////////////////////// - -constexpr int N_THREAD = 8; - -struct gpt2_context { - std::string prompt_base = R"(Hello, how are you? -I'm fine, thanks. How are you? -Thanks, I'm fine too. What are you doing? -I'm just sitting here. -It's a lovely day, isn't it? -Yes, it is. I love the weather this time of year. -I wish it would rain a little bit. -Me too. -)"; - - std::mt19937 rng; - - gpt_vocab vocab; - gpt2_model model; - - int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency()); - - // sampling parameters - int32_t top_k = 5; - float top_p = 0.9f; - float temp = 1.0f; -}; - -struct gpt2_context * gpt2_init(const char * path_model) { - gpt2_context * ctx = new gpt2_context; - - ctx->rng = std::mt19937(time(nullptr)); - - // load the model - { - const int64_t t_start_us = ggml_time_us(); - - if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) { - fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); - delete ctx; - return nullptr; - } - - const int64_t t_load_us = ggml_time_us() - t_start_us; - - printf("gpt-2: model loaded in %d ms\n", (int) (t_load_us/1000)); - } - - return ctx; -} - -void gpt2_free(struct gpt2_context * ctx) { - delete ctx; -} - -const char * gpt2_get_prompt(struct gpt2_context * ctx) { - return ctx->prompt_base.c_str(); -} - -void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt) { - ctx->prompt_base = prompt; -} - -std::vector gpt2_tokenize(const gpt2_context * ctx, const char * text) { - return ::gpt_tokenize(ctx->vocab, text); -} - -std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens) { - int n_past = 0; - - std::vector embd_w; - - // tokenize the prompt - std::vector embd_inp = ::gpt2_tokenize(ctx, text); - - int n_predict = std::min(max_tokens, ctx->model.hparams.n_ctx - (int) embd_inp.size()); - - std::vector embd = embd_inp; - - size_t mem_per_token = 3000000; - - std::string result; - - for (int i = embd.size(); i < (int) embd_inp.size() + n_predict; i++) { - // predict - if (!embd.empty()) { - if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) { - printf("gpt-2: failed to generate text\n"); - return ""; - } - } - - n_past += embd.size(); - embd.clear(); - - { - // sample next token - const int top_k = ctx->top_k; - const float top_p = ctx->top_p; - const float temp = ctx->temp; - - const int n_vocab = ctx->model.hparams.n_vocab; - - const gpt_vocab::id id = gpt_sample_top_k_top_p(ctx->vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, ctx->rng); - - // add it to the context - embd.push_back(id); - } - - result += ctx->vocab.id_to_token[embd[0]]; - - // end of text token - if (embd.back() == 50256) { - break; - } - } - - return result; -} diff --git a/examples/talk.wasm/gpt-2.h b/examples/talk.wasm/gpt-2.h deleted file mode 100644 index 756fbfa9810..00000000000 --- a/examples/talk.wasm/gpt-2.h +++ /dev/null @@ -1,21 +0,0 @@ -#pragma once - -// TODO: Change to C-style API and move to ./examples for easy reuse. - -#include "common.h" - -#include -#include -#include - -struct gpt2_context; - -struct gpt2_context * gpt2_init(const char * path_model); -void gpt2_free(struct gpt2_context * ctx); - -const char * gpt2_get_prompt(struct gpt2_context * ctx); -void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt); - -std::vector gpt2_tokenize(const gpt2_context * ctx, const char * text); - -std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens); diff --git a/examples/talk.wasm/index-tmpl.html b/examples/talk.wasm/index-tmpl.html deleted file mode 100644 index 512439297b1..00000000000 --- a/examples/talk.wasm/index-tmpl.html +++ /dev/null @@ -1,856 +0,0 @@ - - - - Talk - GPT-2 meets Whisper in WebAssembly - - - - -
- Talk - GPT-2 meets Whisper in WebAssembly - -

- - Talk with an Artificial Intelligence in your browser. This demo uses: - - - - All of this runs locally in your browser using WebAssembly.
- You can find more about this project on GitHub. - -

- - More examples: - main | - bench | - stream | - command | - talk | - -

- -
- - Select the models you would like to use and click the "Start" button to begin the conversation - -

- -
- Whisper model: - - -

- Quantized models:

- - - - - -
- -
- -
- GPT-2 model: - - - - - -
- -
- -
- - - - - - - -
- -
- -
- Status: not started - -
[The text context will be displayed here]
-
- -
- - Debug output: - - -
- - Troubleshooting - -

- - The page does some heavy computations, so make sure: - -
    -
  • To use a modern web browser (e.g. Chrome, Firefox)
  • -
  • To use a fast desktop or laptop computer (i.e. not a mobile phone)
  • -
  • Your browser supports WASM Fixed-width SIMD
  • -
- - Note that these neural network models were not meant to be used in a browser, so the performance and
- quality of the results may not be optimal. If you have any questions or suggestions, checkout the following - discussion. - -

- - Here is a short video of the demo in action: https://youtu.be/LeWKl8t1-Hc - -

- -
- - | - Build time: @GIT_DATE@ | - Commit hash: @GIT_SHA1@ | - Commit subject: @GIT_COMMIT_SUBJECT@ | - Source Code | - -
-
- - - - - - diff --git a/examples/talk/.gitignore b/examples/talk/.gitignore deleted file mode 100644 index 9c08e1f4f23..00000000000 --- a/examples/talk/.gitignore +++ /dev/null @@ -1,2 +0,0 @@ -audio.mp3 -to_speak.txt diff --git a/examples/talk/CMakeLists.txt b/examples/talk/CMakeLists.txt deleted file mode 100644 index e099e2cd1b6..00000000000 --- a/examples/talk/CMakeLists.txt +++ /dev/null @@ -1,8 +0,0 @@ -if (WHISPER_SDL2) - # talk - set(TARGET talk) - add_executable(${TARGET} talk.cpp gpt-2.cpp) - target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT}) - - include(DefaultTargetOptions) -endif () diff --git a/examples/talk/README.md b/examples/talk/README.md deleted file mode 100644 index f0121f1c541..00000000000 --- a/examples/talk/README.md +++ /dev/null @@ -1,45 +0,0 @@ -# talk - -Talk with an Artificial Intelligence in your terminal - -[Demo Talk](https://user-images.githubusercontent.com/1991296/206805012-48e71cc2-588d-4745-8798-c1c70ea3b40d.mp4) - -Web version: [examples/talk.wasm](/examples/talk.wasm) - -## Building - -The `talk` tool depends on SDL2 library to capture audio from the microphone. You can build it like this: - -```bash -# Install SDL2 -# On Debian based linux distributions: -sudo apt-get install libsdl2-dev - -# On Fedora Linux: -sudo dnf install SDL2 SDL2-devel - -# Install SDL2 on Mac OS -brew install sdl2 - -# Build the "talk" executable -make talk - -# Run it -./talk -p Santa -``` - -## GPT-2 - -To run this, you will need a ggml GPT-2 model: [instructions](https://github.com/ggerganov/ggml/tree/master/examples/gpt-2#downloading-and-converting-the-original-models) - -Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this: - -``` -wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/ggerganov/ggml/resolve/main/ggml-model-gpt-2-117M.bin -``` - -## TTS - -For best experience, this example needs a TTS tool to convert the generated text responses to voice. -You can use any TTS engine that you would like - simply edit the [speak](speak) script to your needs. -By default, it is configured to use MacOS's `say` or `espeak` or Windows SpeechSynthesizer, but you can use whatever you wish. diff --git a/examples/talk/eleven-labs.py b/examples/talk/eleven-labs.py deleted file mode 100644 index 7ed1d5dc45a..00000000000 --- a/examples/talk/eleven-labs.py +++ /dev/null @@ -1,80 +0,0 @@ -import sys -import argparse -import textwrap - -parser = argparse.ArgumentParser(add_help=False, - formatter_class=argparse.RawTextHelpFormatter) -parser.add_argument("-q", "--quick", action="store_true", - help="skip checking the required library") - -modes = parser.add_argument_group("action") -modes.add_argument("inputfile", metavar="TEXTFILE", - nargs='?', type=argparse.FileType(), default=sys.stdin, - help="read the text file (default: stdin)") -modes.add_argument("-l", "--list", action="store_true", - help="show the list of voices and exit") -modes.add_argument("-h", "--help", action="help", - help="show this help and exit") - -selopts = parser.add_argument_group("voice selection") -selmodes = selopts.add_mutually_exclusive_group() -selmodes.add_argument("-n", "--name", - default="Arnold", - help="get a voice object by name (default: Arnold)") -selmodes.add_argument("-v", "--voice", type=int, metavar="NUMBER", - help="get a voice object by number (see --list)") -selopts.add_argument("-f", "--filter", action="append", metavar="KEY=VAL", - default=["use case=narration"], - help=textwrap.dedent('''\ - filter voices by labels (default: "use case=narration") - this option can be used multiple times - filtering will be disabled if the first -f has no "=" (e.g. -f "any") - ''')) - -outmodes = parser.add_argument_group("output") -outgroup = outmodes.add_mutually_exclusive_group() -outgroup.add_argument("-s", "--save", metavar="FILE", - default="audio.mp3", - help="save the TTS to a file (default: audio.mp3)") -outgroup.add_argument("-p", "--play", action="store_true", - help="play the TTS with ffplay") - -args = parser.parse_args() - -if not args.quick: - import importlib.util - if importlib.util.find_spec("elevenlabs") is None: - print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'") - sys.exit() - -from elevenlabs import voices, generate, play, save - -if args.filter and "=" in args.filter[0]: - voicelist = voices() - for f in args.filter: - label, value = f.split("=") - voicelist = filter(lambda x: x.labels.get(label) == value, voicelist) - voicelist = list(voicelist) -else: - voicelist = list(voices()) - -if args.list: - for i, v in enumerate(voicelist): - print(str(i) + ": " + v.name + " " + str(v.labels)) - sys.exit() - -if args.voice: - voice = voicelist[args.voice % len(voicelist)] -else: - voice = args.name - # if -n should consult -f, use the following - #voice = next(x for x in voicelist if x.name == args.name) - -audio = generate( - text=str(args.inputfile.read()), - voice=voice -) -if args.play: - play(audio) -else: - save(audio, args.save) diff --git a/examples/talk/gpt-2.cpp b/examples/talk/gpt-2.cpp deleted file mode 100644 index 43ca8fa04f9..00000000000 --- a/examples/talk/gpt-2.cpp +++ /dev/null @@ -1,809 +0,0 @@ -#include "ggml.h" -#include "common-ggml.h" - -#include "gpt-2.h" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/////////////////////// GPT-2 BEGIN ///////////////////////// - -// default hparams (GPT-2 117M) -struct gpt2_hparams { - int32_t n_vocab = 50257; - int32_t n_ctx = 1024; - int32_t n_embd = 768; - int32_t n_head = 12; - int32_t n_layer = 12; - int32_t ftype = 1; -}; - -struct gpt2_layer { - // normalization - struct ggml_tensor * ln_1_g; - struct ggml_tensor * ln_1_b; - - struct ggml_tensor * ln_2_g; - struct ggml_tensor * ln_2_b; - - // attention - struct ggml_tensor * c_attn_attn_w; - struct ggml_tensor * c_attn_attn_b; - - struct ggml_tensor * c_attn_proj_w; - struct ggml_tensor * c_attn_proj_b; - - // mlp - struct ggml_tensor * c_mlp_fc_w; - struct ggml_tensor * c_mlp_fc_b; - - struct ggml_tensor * c_mlp_proj_w; - struct ggml_tensor * c_mlp_proj_b; -}; - -struct gpt2_model { - gpt2_hparams hparams; - - // normalization - struct ggml_tensor * ln_f_g; - struct ggml_tensor * ln_f_b; - - struct ggml_tensor * wte; // position embedding - struct ggml_tensor * wpe; // token embedding - struct ggml_tensor * lm_head; // language model head - - std::vector layers; - - // key + value memory - struct ggml_tensor * memory_k; - struct ggml_tensor * memory_v; - - // - struct ggml_context * ctx; - std::map tensors; -}; - -// load the model's weights from a file -static bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) { - printf("%s: loading model from '%s'\n", __func__, fname.c_str()); - - auto fin = std::ifstream(fname, std::ios::binary); - if (!fin) { - fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); - return false; - } - - // verify magic - { - uint32_t magic; - fin.read((char *) &magic, sizeof(magic)); - if (magic != 0x67676d6c) { - fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); - return false; - } - } - - // load hparams - { - auto & hparams = model.hparams; - - fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); - fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); - fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); - fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); - fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); - fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); - - printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); - printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); - printf("%s: n_embd = %d\n", __func__, hparams.n_embd); - printf("%s: n_head = %d\n", __func__, hparams.n_head); - printf("%s: n_layer = %d\n", __func__, hparams.n_layer); - printf("%s: ftype = %d\n", __func__, hparams.ftype); - } - - // load vocab - { - int32_t n_vocab = 0; - fin.read((char *) &n_vocab, sizeof(n_vocab)); - - if (n_vocab != model.hparams.n_vocab) { - fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", - __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); - return false; - } - - char word[129]; - - for (int i = 0; i < n_vocab; i++) { - uint32_t len; - fin.read((char *) &len, sizeof(len)); - word[len] = '\0'; - fin.read((char *) word, len); - - vocab.token_to_id[word] = i; - vocab.id_to_token[i] = word; - } - } - - // for the big tensors, we have the option to store the data in 16-bit floats or quantized - // in order to save memory and also to speed up the computation - ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); - if (wtype == GGML_TYPE_COUNT) { - fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", - __func__, fname.c_str(), model.hparams.ftype); - return false; - } - - auto & ctx = model.ctx; - - size_t ctx_size = 0; - - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - - ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd); // ln_f_g - ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd); // ln_f_b - - ctx_size += n_vocab*ggml_row_size(wtype, n_embd); // wte - ctx_size += n_ctx*ggml_row_size(GGML_TYPE_F32, n_embd); // wpe - ctx_size += n_vocab*ggml_row_size(wtype, n_embd); // lm_head - - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_1_g - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_1_b - - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_2_g - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // ln_2_b - - ctx_size += n_layer*(ggml_row_size(wtype, 3*n_embd*n_embd)); // c_attn_attn_w - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 3*n_embd)); // c_attn_attn_b - - ctx_size += n_layer*(ggml_row_size(wtype, n_embd*n_embd)); // c_attn_proj_w - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // c_attn_proj_b - - ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd)); // c_mlp_fc_w - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 4*n_embd)); // c_mlp_fc_b - - ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd)); // c_mlp_proj_w - ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd)); // c_mlp_proj_b - - ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd); // memory_k - ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd); // memory_v - - ctx_size += (6 + 12*n_layer)*256; // object overhead - - printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); - } - - // create the ggml context - { - struct ggml_init_params params = { - /*.mem_size =*/ ctx_size, - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ false, - }; - - model.ctx = ggml_init(params); - if (!model.ctx) { - fprintf(stderr, "%s: ggml_init() failed\n", __func__); - return false; - } - } - - // prepare memory for the weights - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - - model.layers.resize(n_layer); - - model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); - model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx); - model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); - - // map by name - model.tensors["model/ln_f/g"] = model.ln_f_g; - model.tensors["model/ln_f/b"] = model.ln_f_b; - - model.tensors["model/wte"] = model.wte; - model.tensors["model/wpe"] = model.wpe; - model.tensors["model/lm_head"] = model.lm_head; - - for (int i = 0; i < n_layer; ++i) { - auto & layer = model.layers[i]; - - layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd); - layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd); - - layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); - layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); - layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); - - layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); - layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - // map by name - model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g; - model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b; - - model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g; - model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b; - - model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w; - model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b; - - model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w; - model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b; - - model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w; - model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b; - - model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w; - model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b; - } - } - - // key + value memory - { - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - - const int n_mem = n_layer*n_ctx; - const int n_elements = n_embd*n_mem; - - model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); - model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); - - const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); - - printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); - } - - // load weights - { - size_t total_size = 0; - - bool has_lm_head = false; - - while (true) { - int32_t n_dims; - int32_t length; - int32_t ttype; - - fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); - fin.read(reinterpret_cast(&length), sizeof(length)); - fin.read(reinterpret_cast(&ttype), sizeof(ttype)); - - if (fin.eof()) { - break; - } - - int32_t nelements = 1; - int32_t ne[2] = { 1, 1 }; - for (int i = 0; i < n_dims; ++i) { - fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); - nelements *= ne[i]; - } - - std::string name(length, 0); - fin.read(&name[0], length); - - if (model.tensors.find(name.data()) == model.tensors.end()) { - fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); - return false; - } - - auto tensor = model.tensors[name.data()]; - if (ggml_nelements(tensor) != nelements) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); - return false; - } - - if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { - fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", - __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]); - return false; - } - - // for debugging - if (0) { - printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); - } - - const size_t bpe = ggml_type_size(ggml_type(ttype)); - - if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { - fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", - __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); - return false; - } - - fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); - - // GPT-2 models share the WTE tensor as the LM head - if (name == "model/wte" && has_lm_head == false) { - memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor)); - } - - if (name == "model/lm_head") { - has_lm_head = true; - } - - total_size += ggml_nbytes(tensor); - } - - printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); - } - - fin.close(); - - return true; -} - -// evaluate the transformer -// -// - model: the model -// - n_threads: number of threads to use -// - n_past: the context size so far -// - embd_inp: the embeddings of the tokens in the context -// - embd_w: the predicted logits for the next token -// -// TODO: sync latest version from ggml repo -static bool gpt2_eval( - const gpt2_model & model, - const int n_threads, - const int n_past, - const std::vector & embd_inp, - std::vector & embd_w, - size_t & mem_per_token) { - const int N = embd_inp.size(); - - const auto & hparams = model.hparams; - - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_head = hparams.n_head; - const int n_vocab = hparams.n_vocab; - - static size_t buf_size = 512u*1024*1024; - static void * buf = malloc(buf_size); - - if (mem_per_token > 0 && mem_per_token*N > buf_size) { - const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead - //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); - - // reallocate - buf_size = buf_size_new; - buf = realloc(buf, buf_size); - if (buf == nullptr) { - fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); - return false; - } - } - - struct ggml_init_params params = { - /*.mem_size =*/ buf_size, - /*.mem_buffer =*/ buf, - /*.no_alloc =*/ false, - }; - - struct ggml_context * ctx0 = ggml_init(params); - struct ggml_cgraph gf = {}; - - struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); - - struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - for (int i = 0; i < N; ++i) { - ((int32_t *) position->data)[i] = n_past + i; - } - - // wte + wpe - struct ggml_tensor * inpL = - ggml_add(ctx0, - ggml_get_rows(ctx0, model.wte, embd), - ggml_get_rows(ctx0, model.wpe, position)); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * cur; - - // norm - { - // [ 768, N] - cur = ggml_norm(ctx0, inpL, 1e-5f); - - // cur = ln_1_g*cur + ln_1_b - // [ 768, N] - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), - cur), - ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); - } - - // attn - // [2304, 768] - model.layers[il].c_attn_attn_w - // [2304, 1] - model.layers[il].c_attn_attn_b - // [ 768, N] - cur (in) - // [2304, N] - cur (out) - // - // cur = attn_w*cur + attn_b - // [2304, N] - { - cur = ggml_mul_mat(ctx0, - model.layers[il].c_attn_attn_w, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), - cur); - } - - // self-attention - { - struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd); - struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd); - struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd); - - // store key and value to memory - if (N >= 1) { - struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past)); - - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); - ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); - } - - // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) - // [64, N, 12] - struct ggml_tensor * Q = - ggml_permute(ctx0, - ggml_cpy(ctx0, - Qcur, - ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), - 0, 2, 1, 3); - - // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) - // [64, n_past + N, 12] - struct ggml_tensor * K = - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), - n_embd/n_head, n_head, n_past + N), - 0, 2, 1, 3); - - // GG: flash attention - //struct ggml_tensor * V = - // ggml_cpy(ctx0, - // ggml_permute(ctx0, - // ggml_reshape_3d(ctx0, - // ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), - // n_embd/n_head, n_head, n_past + N), - // 1, 2, 0, 3), - // ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head)); - - //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true); - - // K * Q - // [n_past + N, N, 12] - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - - // KQ_scaled = KQ / sqrt(n_embd/n_head) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_scaled = - ggml_scale(ctx0, - KQ, - 1.0f/sqrt(float(n_embd)/n_head)); - - // KQ_masked = mask_past(KQ_scaled) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); - - // KQ = soft_max(KQ_masked) - // [n_past + N, N, 12] - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); - - // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() - // [n_past + N, 64, 12] - struct ggml_tensor * V_trans = - ggml_cpy(ctx0, - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), - n_embd/n_head, n_head, n_past + N), - 1, 2, 0, 3), - ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head)); - - // KQV = transpose(V) * KQ_soft_max - // [64, N, 12] - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); - - // KQV_merged = KQV.permute(0, 2, 1, 3) - // [64, 12, N] - struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - - // cur = KQV_merged.contiguous().view(n_embd, N) - // [768, N] - cur = ggml_cpy(ctx0, - KQV_merged, - ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); - } - - // projection - // [ 768, 768] - model.layers[il].c_attn_proj_w - // [ 768, 1] - model.layers[il].c_attn_proj_b - // [ 768, N] - cur (in) - // [ 768, N] - cur (out) - // - // cur = proj_w*cur + proj_b - // [768, N] - { - cur = ggml_mul_mat(ctx0, - model.layers[il].c_attn_proj_w, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), - cur); - } - - // add the input - cur = ggml_add(ctx0, cur, inpL); - - struct ggml_tensor * inpFF = cur; - - // feed-forward network - { - // norm - { - cur = ggml_norm(ctx0, inpFF, 1e-5f); - - // cur = ln_2_g*cur + ln_2_b - // [ 768, N] - cur = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.layers[il].ln_2_g, cur), - cur), - ggml_repeat(ctx0, model.layers[il].ln_2_b, cur)); - } - - // fully connected - // [3072, 768] - model.layers[il].c_mlp_fc_w - // [3072, 1] - model.layers[il].c_mlp_fc_b - // [ 768, N] - cur (in) - // [3072, N] - cur (out) - // - // cur = fc_w*cur + fc_b - // [3072, N] - cur = ggml_mul_mat(ctx0, - model.layers[il].c_mlp_fc_w, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), - cur); - - // GELU activation - // [3072, N] - cur = ggml_gelu(ctx0, cur); - - // projection - // [ 768, 3072] - model.layers[il].c_mlp_proj_w - // [ 768, 1] - model.layers[il].c_mlp_proj_b - // [3072, N] - cur (in) - // [ 768, N] - cur (out) - // - // cur = proj_w*cur + proj_b - // [768, N] - cur = ggml_mul_mat(ctx0, - model.layers[il].c_mlp_proj_w, - cur); - - cur = ggml_add(ctx0, - ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), - cur); - } - - // input for next layer - inpL = ggml_add(ctx0, cur, inpFF); - } - - // norm - { - // [ 768, N] - inpL = ggml_norm(ctx0, inpL, 1e-5f); - - // inpL = ln_f_g*inpL + ln_f_b - // [ 768, N] - inpL = ggml_add(ctx0, - ggml_mul(ctx0, - ggml_repeat(ctx0, model.ln_f_g, inpL), - inpL), - ggml_repeat(ctx0, model.ln_f_b, inpL)); - } - - // inpL = WTE * inpL - // [ 768, 50257] - model.lm_head - // [ 768, N] - inpL - inpL = ggml_mul_mat(ctx0, model.lm_head, inpL); - - // logits -> probs - //inpL = ggml_soft_max(ctx0, inpL); - - // run the computation - ggml_build_forward_expand (&gf, inpL); - ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); - - //if (n_past%100 == 0) { - // ggml_graph_print (&gf); - // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); - //} - - //embd_w.resize(n_vocab*N); - //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); - - // return result just for the last token - embd_w.resize(n_vocab); - memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); - - if (mem_per_token == 0) { - mem_per_token = ggml_used_mem(ctx0)/N; - } - //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); - - ggml_free(ctx0); - - return true; -} - -/////////////////////////////// GPT-2 END //////////////////////////////// - -constexpr int N_THREAD = 8; - -struct gpt2_context { - std::string prompt_base = R"(Hello, how are you? -I'm fine, thanks. How are you? -Thanks, I'm fine too. What are you doing? -I'm just sitting here. -It's a lovely day, isn't it? -Yes, it is. I love the weather this time of year. -I wish it would rain a little bit. -Me too. -)"; - - std::mt19937 rng; - - gpt_vocab vocab; - gpt2_model model; - - int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency()); - - // sampling parameters - int32_t top_k = 5; - float top_p = 0.9f; - float temp = 1.0f; -}; - -struct gpt2_context * gpt2_init(const char * path_model) { - gpt2_context * ctx = new gpt2_context; - - ctx->rng = std::mt19937(time(nullptr)); - - // load the model - { - const int64_t t_start_us = ggml_time_us(); - - if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) { - fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); - delete ctx; - return nullptr; - } - - const int64_t t_load_us = ggml_time_us() - t_start_us; - - printf("gpt-2: model loaded in %d ms\n", (int) (t_load_us/1000)); - } - - return ctx; -} - -void gpt2_free(struct gpt2_context * ctx) { - delete ctx; -} - -const char * gpt2_get_prompt(struct gpt2_context * ctx) { - return ctx->prompt_base.c_str(); -} - -void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt) { - ctx->prompt_base = prompt; -} - -std::vector gpt2_tokenize(const gpt2_context * ctx, const char * text) { - return ::gpt_tokenize(ctx->vocab, text); -} - -std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens) { - int n_past = 0; - - std::vector embd_w; - - // tokenize the prompt - std::vector embd_inp = ::gpt2_tokenize(ctx, text); - - int n_predict = std::min(max_tokens, ctx->model.hparams.n_ctx - (int) embd_inp.size()); - - std::vector embd = embd_inp; - - size_t mem_per_token = 3000000; - - std::string result; - - for (int i = embd.size(); i < (int) embd_inp.size() + n_predict; i++) { - // predict - if (!embd.empty()) { - if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) { - printf("gpt-2: failed to generate text\n"); - return ""; - } - } - - n_past += embd.size(); - embd.clear(); - - { - // sample next token - const int top_k = ctx->top_k; - const float top_p = ctx->top_p; - const float temp = ctx->temp; - - const int n_vocab = ctx->model.hparams.n_vocab; - - const gpt_vocab::id id = gpt_sample_top_k_top_p(ctx->vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, ctx->rng); - - // add it to the context - embd.push_back(id); - } - - result += ctx->vocab.id_to_token[embd[0]]; - - // end of text token - if (embd.back() == 50256) { - break; - } - } - - return result; -} diff --git a/examples/talk/gpt-2.h b/examples/talk/gpt-2.h deleted file mode 100644 index 756fbfa9810..00000000000 --- a/examples/talk/gpt-2.h +++ /dev/null @@ -1,21 +0,0 @@ -#pragma once - -// TODO: Change to C-style API and move to ./examples for easy reuse. - -#include "common.h" - -#include -#include -#include - -struct gpt2_context; - -struct gpt2_context * gpt2_init(const char * path_model); -void gpt2_free(struct gpt2_context * ctx); - -const char * gpt2_get_prompt(struct gpt2_context * ctx); -void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt); - -std::vector gpt2_tokenize(const gpt2_context * ctx, const char * text); - -std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens); diff --git a/examples/talk/speak b/examples/talk/speak deleted file mode 100644 index 31ea417a92b..00000000000 --- a/examples/talk/speak +++ /dev/null @@ -1,40 +0,0 @@ -#!/bin/bash - -# Usage: -# speak - -function installed() { command -v $1 >/dev/null 2>&1; } - -if installed espeak; then - espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 -f $2 - -elif installed piper && installed aplay; then - cat $2 | piper --model ~/en_US-lessac-medium.onnx --output-raw | aplay -q -r 22050 -f S16_LE -t raw - - -# for Mac -elif installed say; then - say -f $2 - -# Eleven Labs -elif installed python3 && \ - python3 -c 'import importlib.util; exit(not importlib.util.find_spec("elevenlabs"))' && \ - installed ffplay; then - # It's possible to use the API for free with limited number of characters. - # To increase this limit register to https://beta.elevenlabs.io to get an api key - # and paste it after 'ELEVEN_API_KEY=' - # Keep the line commented to use the free version without api key - #export ELEVEN_API_KEY=your_api_key - wd=$(dirname $0) - script=$wd/eleven-labs.py - python3 $script -q -p -v $1 $2 >/dev/null 2>&1 - - # Uncomment to keep the audio file - #python3 $script -q -s ./audio.mp3 -v $1 $2 >/dev/null 2>&1 - #ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3 >/dev/null 2>&1 - -else - echo 'Install espeak ("brew install espeak" or "apt-get install espeak"),' - echo 'piper ("pip install piper-tts" or https://github.com/rhasspy/piper) with aplay,' - echo 'or elevenlabs ("pip install elevenlabs") with ffplay.' - echo '(export ELEVEN_API_KEY if you have an api key from https://beta.elevenlabs.io)' -fi diff --git a/examples/talk/speak.bat b/examples/talk/speak.bat deleted file mode 100644 index d719d6909c9..00000000000 --- a/examples/talk/speak.bat +++ /dev/null @@ -1 +0,0 @@ -@powershell -ExecutionPolicy Bypass -F examples\talk\speak.ps1 %1 %2 diff --git a/examples/talk/speak.ps1 b/examples/talk/speak.ps1 deleted file mode 100644 index 51139586336..00000000000 --- a/examples/talk/speak.ps1 +++ /dev/null @@ -1,14 +0,0 @@ -# Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope CurrentUser -param( - [Parameter(Mandatory=$true)][int]$voicenum, - [Parameter(Mandatory=$true)][string]$textfile -) - -Add-Type -AssemblyName System.Speech; -$speak = New-Object System.Speech.Synthesis.SpeechSynthesizer; -$voiceoptions = $speak.GetInstalledVoices("en-US"); -$voice = $voiceoptions[$voicenum % $voiceoptions.count]; -$speak.SelectVoice($voice.VoiceInfo.Name); -$speak.Rate="0"; -$text = Get-Content -Path $textfile; -$speak.Speak($text); diff --git a/examples/talk/talk.cpp b/examples/talk/talk.cpp deleted file mode 100644 index 428f38b7898..00000000000 --- a/examples/talk/talk.cpp +++ /dev/null @@ -1,376 +0,0 @@ -// Talk with AI -// - -#include "common-sdl.h" -#include "common.h" -#include "whisper.h" -#include "gpt-2.h" - -#include -#include -#include -#include -#include -#include -#include -#include - -// command-line parameters -struct whisper_params { - int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - int32_t voice_ms = 10000; - int32_t capture_id = -1; - int32_t max_tokens = 32; - int32_t audio_ctx = 0; - - float vad_thold = 0.6f; - float freq_thold = 100.0f; - - bool translate = false; - bool print_special = false; - bool print_energy = false; - bool no_timestamps = true; - bool use_gpu = true; - bool flash_attn = false; - - std::string person = "Santa"; - std::string language = "en"; - std::string model_wsp = "models/ggml-base.en.bin"; - std::string model_gpt = "models/ggml-gpt-2-117M.bin"; - std::string speak = "./examples/talk/speak"; - std::string speak_file= "./examples/talk/to_speak.txt"; - std::string fname_out; -}; - -void whisper_print_usage(int argc, char ** argv, const whisper_params & params); - -static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { - for (int i = 1; i < argc; i++) { - std::string arg = argv[i]; - - if (arg == "-h" || arg == "--help") { - whisper_print_usage(argc, argv, params); - exit(0); - } - else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } - else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); } - else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } - else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); } - else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } - else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); } - else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); } - else if (arg == "-tr" || arg == "--translate") { params.translate = true; } - else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } - else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; } - else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; } - else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; } - else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; } - else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; } - else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; } - else if (arg == "-mg" || arg == "--model-gpt") { params.model_gpt = argv[++i]; } - else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; } - else if (arg == "-sf" || arg == "--speak_file") { params.speak_file = argv[++i]; } - else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } - else { - fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); - whisper_print_usage(argc, argv, params); - exit(0); - } - } - - return true; -} - -void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) { - fprintf(stderr, "\n"); - fprintf(stderr, "usage: %s [options]\n", argv[0]); - fprintf(stderr, "\n"); - fprintf(stderr, "options:\n"); - fprintf(stderr, " -h, --help [default] show this help message and exit\n"); - fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); - fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms); - fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id); - fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens); - fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx); - fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold); - fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold); - fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false"); - fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false"); - fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false"); - fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true"); - fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false"); - fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str()); - fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str()); - fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str()); - fprintf(stderr, " -mg FILE, --model-gpt [%-7s] gpt model file\n", params.model_gpt.c_str()); - fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str()); - fprintf(stderr, " -sf FILE, --speak_file [%-7s] file to pass to TTS\n", params.speak_file.c_str()); - fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str()); - fprintf(stderr, "\n"); -} - -static std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector & pcmf32, float & prob, int64_t & t_ms) { - const auto t_start = std::chrono::high_resolution_clock::now(); - - prob = 0.0f; - t_ms = 0; - - whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); - - wparams.print_progress = false; - wparams.print_special = params.print_special; - wparams.print_realtime = false; - wparams.print_timestamps = !params.no_timestamps; - wparams.translate = params.translate; - wparams.no_context = true; - wparams.single_segment = true; - wparams.max_tokens = params.max_tokens; - wparams.language = params.language.c_str(); - wparams.n_threads = params.n_threads; - - wparams.audio_ctx = params.audio_ctx; - - if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { - return ""; - } - - int prob_n = 0; - std::string result; - - const int n_segments = whisper_full_n_segments(ctx); - for (int i = 0; i < n_segments; ++i) { - const char * text = whisper_full_get_segment_text(ctx, i); - - result += text; - - const int n_tokens = whisper_full_n_tokens(ctx, i); - for (int j = 0; j < n_tokens; ++j) { - const auto token = whisper_full_get_token_data(ctx, i, j); - - prob += token.p; - ++prob_n; - } - } - - if (prob_n > 0) { - prob /= prob_n; - } - - const auto t_end = std::chrono::high_resolution_clock::now(); - t_ms = std::chrono::duration_cast(t_end - t_start).count(); - - return result; -} - -const std::string k_prompt = -R"(This is a dialogue between {0} (A) and a person (B). The dialogue so far is: - -B: Hello {0}, how are you? -A: I'm fine, thank you. -{1} -Here is how {0} (A) continues the dialogue: - -A:)"; - -int main(int argc, char ** argv) { - whisper_params params; - - if (whisper_params_parse(argc, argv, params) == false) { - return 1; - } - - if (whisper_lang_id(params.language.c_str()) == -1) { - fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); - whisper_print_usage(argc, argv, params); - exit(0); - } - - // whisper init - struct whisper_context_params cparams = whisper_context_default_params(); - - cparams.use_gpu = params.use_gpu; - cparams.flash_attn = params.flash_attn; - - struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams); - - // gpt init - - struct gpt2_context * ctx_gpt = gpt2_init(params.model_gpt.c_str()); - - // print some info about the processing - { - fprintf(stderr, "\n"); - if (!whisper_is_multilingual(ctx_wsp)) { - if (params.language != "en" || params.translate) { - params.language = "en"; - params.translate = false; - fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); - } - } - fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n", - __func__, - params.n_threads, - params.language.c_str(), - params.translate ? "translate" : "transcribe", - params.no_timestamps ? 0 : 1); - - fprintf(stderr, "\n"); - } - - - // init audio - - audio_async audio(30*1000); - if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) { - fprintf(stderr, "%s: audio.init() failed!\n", __func__); - return 1; - } - - audio.resume(); - - int n_iter = 0; - - bool is_running = true; - bool force_speak = false; - - float prob0 = 0.0f; - - std::vector pcmf32_cur; - std::vector pcmf32_prompt; - - gpt2_set_prompt(ctx_gpt, ""); - - const int voice_id = rand()%6; - - fprintf(stderr, "gpt-2: prompt:\n"); - fprintf(stderr, "========================\n\n"); - fprintf(stderr, "%s\n", ::replace(k_prompt, "{0}", params.person).c_str()); - fprintf(stderr, "========================\n\n"); - - // main loop - while (is_running) { - // handle Ctrl + C - is_running = sdl_poll_events(); - - if (!is_running) { - break; - } - - // delay - std::this_thread::sleep_for(std::chrono::milliseconds(100)); - - int64_t t_ms = 0; - - { - audio.get(2000, pcmf32_cur); - - if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) { - fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); - - audio.get(params.voice_ms, pcmf32_cur); - - std::string text_heard; - - if (!force_speak) { - text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prob0, t_ms)); - } - - // remove text between brackets using regex - { - std::regex re("\\[.*?\\]"); - text_heard = std::regex_replace(text_heard, re, ""); - } - - // remove text between brackets using regex - { - std::regex re("\\(.*?\\)"); - text_heard = std::regex_replace(text_heard, re, ""); - } - - // remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' ' - text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); - - // take first line - text_heard = text_heard.substr(0, text_heard.find_first_of('\n')); - - // remove leading and trailing whitespace - text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), ""); - text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), ""); - - const std::vector tokens = gpt2_tokenize(ctx_gpt, text_heard.c_str()); - - if (text_heard.empty() || tokens.empty() || force_speak) { - fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__); - audio.clear(); - - continue; - } - - force_speak = false; - - fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", text_heard.c_str(), "\033[0m", (int) t_ms); - - std::string prompt_base = gpt2_get_prompt(ctx_gpt); - - std::string text_to_speak; - - { - prompt_base += "B: " + text_heard + "\n"; - - std::string prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base); - - text_to_speak = gpt2_gen_text(ctx_gpt, prompt.c_str(), params.max_tokens); - //text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); - text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of('\n')); - - // remove first 2 lines of base prompt - if (n_iter > 4) { - { - const size_t pos = prompt_base.find_first_of('\n'); - if (pos != std::string::npos) { - prompt_base = prompt_base.substr(pos + 1); - } - } - { - const size_t pos = prompt_base.find_first_of('\n'); - if (pos != std::string::npos) { - prompt_base = prompt_base.substr(pos + 1); - } - } - } - - prompt_base += "A:" + text_to_speak + "\n"; - - { - prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base); - - printf("===============\n"); - printf("prompt:\n"); - printf("%s\n", prompt.c_str()); - printf("===============\n"); - } - } - - //printf("========================\n"); - //printf("gpt-2: prompt_base:\n%s\n", prompt_base.c_str()); - //printf("========================\n"); - - gpt2_set_prompt(ctx_gpt, prompt_base.c_str()); - - text_to_speak = ::replace(text_to_speak, params.person + ": ", ""); - speak_with_file(params.speak, text_to_speak, params.speak_file, voice_id); - - audio.clear(); - - ++n_iter; - } - } - } - - audio.pause(); - - whisper_print_timings(ctx_wsp); - whisper_free(ctx_wsp); - - return 0; -} diff --git a/examples/talk/to_speak.txt b/examples/talk/to_speak.txt new file mode 100644 index 00000000000..c225e37c573 --- /dev/null +++ b/examples/talk/to_speak.txt @@ -0,0 +1 @@ + I'm Santa Claus. I'm here to help you. \ No newline at end of file